Eh, not really. It's been a while, but I'm pretty sure the rule in algebra when solving for a squared variable like this is to use ± for exactly that reason.
Afaik sqrt only returns positive numbers, but if you're searching for X you should do more logic, as both -3 and 3 squared is 9, but sqrt(9) is just 3.
If I'm wrong please correct me, caz I don't really know how to properly write this down in a proof, so I might be wrong here. :p
(ps: I fact checked with wolfram, but I still donno how to split the equation formally)
The number of solutions/roots is equal to the highest power x is raised to (there are other forms with different rules and this applies to R and C not higher order systems)
Some roots can be complex and some can be duplicates but when it comes to the real and complex roots, that rule generally holds.
I think you can make arbitrarily complicated roots if you move over to Gn which includes the R and C roots...
For example the grade 4 blade (3e1e2e3e4)^2 = 9 in G4
Complex roots are covered because the grade 2 blade (e1e2)^2 = -1 making it identical to i so Gn(n>=2) includes C.
Gn also includes all the scalars (grade 0 blades) so all the real roots are included.
Gn also includes all the vectors (grade 1 blades) so any vector with length 3 will square to 9 because u^2 = u dot u = |u|^2 where u is a vector.
All blades will square to a scalar but blades are not the only thing in Gn so things get weird with the multivectors(sums of different grades). Any blade with grade n%4 < 2 will square to a positive scalar and the other grades will square to a negative, with the abs of the scalar equal to the norm2 of the blade. Can pretty much just make as many roots as you want if you are willing to move into higher dimensional spaces and use a way cooler product.
I thought this would be related to quaternions, octonions etc. but no, it's multivectors and wedge products. Very neat, I didn't know you could use them like that.
To translate: As a child learning math this equates to “ignore math, the explanations don’t explain anything real, they only explain more math.“
“The only explanation is more abstraction with no real world application as far as math class is concerned. Frankly, there’s more application to your own life experience if you focus on language and the arts.”
i think this is a really clean explanation of why (-3) * (-3) should equal 9. i wanted to point out that with a little more work, it's possible to see why (-3) * (-3) must equal 9. and this is basically a consequence of the distributive law:
the first equality uses 0 * anything = 0. the second equality uses (3 + -3) = 0. the third equality uses the distribute law, and the fourth equality uses 3 * (-3) = -9, which was shown in the previous comment.
so, by adding 9 to both sides, we get:
9 = 9 - 9 + (-3) * (-3).
in other words, 9 = (-3) * (-3). this basically says that if we want the distribute law to be true, then we need to have (-3) * (-3) = 9.
it's also worth mentioning that this is a specific instance of a proof that shows (-a) * (-b) = a * b is true for arbitrary rings. (a ring is basically a fancy name for a structure with addition and distribute multiplication.) so, any time you want to have any kind of multiplication that satisfies the distribute law, you need (-a) * (-b) = a * b.
in particular, (-A) * (-B) = A * B is also true when A and B are matrices. and you can prove this using the same argument that was used above.