Skip Navigation

🌚 - 2024 DAY 4 SOLUTIONS - 🌚

Day 4: Ceres Search

Megathread guidelines

  • Keep top level comments as only solutions, if you want to say something other than a solution put it in a new post. (replies to comments can be whatever)
  • You can send code in code blocks by using three backticks, the code, and then three backticks or use something such as https://topaz.github.io/paste/ if you prefer sending it through a URL

FAQ

34
34 comments
  • Haskell

    Popular language this year :)

    I got embarrassingly stuck on this one trying to be clever with list operations. Then I realized I should just use an array...

    import Data.Array.Unboxed (UArray)
    import Data.Array.Unboxed qualified as A
    import Data.Bifunctor
    
    readInput :: String -> UArray (Int, Int) Char
    readInput s =
      let rows = lines s
          n = length rows
       in A.listArray ((1, 1), (n, n)) $ concat rows
    
    s1 `eq` s2 = s1 == s2 || s1 == reverse s2
    
    part1 arr = length $ filter isXmas $ concatMap lines $ A.indices arr
      where
        isXmas ps = all (A.inRange $ A.bounds arr) ps && map (arr A.!) ps `eq` "XMAS"
        lines p = [take 4 $ iterate (bimap (+ di) (+ dj)) p | (di, dj) <- [(1, 0), (0, 1), (1, 1), (1, -1)]]
    
    part2 arr = length $ filter isXmas innerPoints
      where
        innerPoints =
          let ((i1, j1), (i2, j2)) = A.bounds arr
           in [(i, j) | i <- [i1 + 1 .. i2 - 1], j <- [j1 + 1 .. j2 - 1]]
        isXmas p = up p `eq` "MAS" && down p `eq` "MAS"
        up (i, j) = map (arr A.!) [(i + 1, j - 1), (i, j), (i - 1, j + 1)]
        down (i, j) = map (arr A.!) [(i - 1, j - 1), (i, j), (i + 1, j + 1)]
    
    main = do
      input <- readInput <$> readFile "input04"
      print $ part1 input
      print $ part2 input
    
  • I struggled a lot more when doing list slices that I would've liked to

    Haskell

    
    import Data.List qualified as List
    
    collectDiagonal :: [String] -> Int -> Int -> String
    collectDiagonal c y x
            | length c > y && length (c !! y) > x = c !! y !! x : collectDiagonal c (y+1) (x+1)
            | otherwise = []
    
    part1 c = do
            let forwardXMAS  = map (length . filter (List.isPrefixOf "XMAS") . List.tails) $ c
            let backwardXMAS = map (length . filter (List.isPrefixOf "XMAS") . List.tails . reverse) $ c
            let downwardXMAS  = map (length . filter (List.isPrefixOf "XMAS") . List.tails ) . List.transpose $ c
            let upwardXMAS = map (length . filter (List.isPrefixOf "XMAS") . List.tails . reverse ) . List.transpose $ c
            let leftSideDiagonals = map (\ y -> collectDiagonal c y 0) [0..length c]
            let leftTopDiagonals = map (\ x -> collectDiagonal c 0 x) [1..(length . List.head $ c)]
            let leftDiagonals = leftSideDiagonals ++ leftTopDiagonals
            let rightSideDiagonals = map (\ y -> collectDiagonal (map List.reverse c) y 0) [0..length c]
            let rightTopDiagonals = map (\ x -> collectDiagonal (map List.reverse c) 0 x) [1..(length . List.head $ c)]
            let rightDiagonals = rightSideDiagonals ++ rightTopDiagonals
            let diagonals = leftDiagonals ++ rightDiagonals
    
            let diagonalXMAS = map (length . filter (List.isPrefixOf "XMAS") . List.tails) $ diagonals
            let reverseDiagonalXMAS = map (length . filter (List.isPrefixOf "XMAS") . List.tails . reverse) $ diagonals
    
            print . sum $ [sum forwardXMAS, sum backwardXMAS, sum downwardXMAS, sum upwardXMAS, sum diagonalXMAS, sum reverseDiagonalXMAS]
            return ()
    
    getBlock h w c y x = map (take w . drop x) . take h . drop y $ c
    
    isXBlock b = do
            let diagonal1 = collectDiagonal b 0 0
            let diagonal2 = collectDiagonal (map List.reverse b) 0 0
    
            diagonal1 `elem` ["SAM", "MAS"] && diagonal2 `elem` ["SAM", "MAS"]
    
    part2 c = do
            
            let lineBlocks = List.map (getBlock 3 3 c) [0..length c - 1]
            let groupedBlocks = List.map (flip List.map [0..(length . head $ c) - 1]) lineBlocks
    
            print . sum . map (length . filter isXBlock) $ groupedBlocks
    
            return ()
    
    main = do
            c <- lines <$> getContents
    
            part1 c
            part2 c
    
            return ()
    
  • J

    Unsurprisingly this is the kind of problem that J is really good at. The dyadic case (table) of the adverb / is doing all the heavy lifting here: it makes a higher rank tensor by traversing items of the specified rank on each side and combining them according to the remaining frame of each side's shape. The hard part is arranging the arguments so that your resulting matrix has its axes in the correct order.

    data_file_name =: '4.data'
    
    NB. cutopen yields boxed lines, so unbox them and ravel items to make a letter matrix
    grid =: ,. > cutopen fread data_file_name
    NB. pad the grid on every side with #'XMAS' - 1 spaces
    hpadded_grid =: (('   ' &amp; ,) @: (, &amp; '   '))"1 grid
    padded_grid =: (3 1 $ ' ') , hpadded_grid , (3 1 $ ' ')
    NB. traversal vectors
    directions =: 8 2 $ 1 0 1 1 0 1 _1 1 _1 0 _1 _1 0 _1 1 _1
    NB. rpos cpos matches rdir cdir if the string starting at rpos cpos in
    NB. direction rdir cdir is the string we want
    matches =: 4 : 0
    */ ,'XMAS' -: padded_grid {~ &lt;"1 x +"1 y *"1 0 i. 4
    )"1
    positions =: (3 + i. 0 { $ grid) ,"0/ (3 + i. 1 { $ grid)
    result1 =: +/, positions matches/ directions
    
    NB. pairs of traversal vectors
    x_directions =: 4 2 2 $ 1 1 _1 1 1 1 1 _1 _1 _1 _1 1 _1 _1 1 _1
    NB. rpos cpos x_matches 2 2 $ rdir1 cdir1 rdir2 cdir2 if there is an 'A' at
    NB. rpos cpos and the string in each of dir1 and dir2 centered at rpos cpos
    NB. is the string we want
    x_matches =: 4 : 0
    NB. (2 2 $ rdir1 cdir1 rdir2 cdir2) *"1 0/ (_1 + i.3) yields a matrix
    NB. 2 3 $ (_1 * dir1) , (0 * dir1) , (1 * dir1) followed by the same for dir2
    */ ,'MAS' -:"1 padded_grid {~ &lt;"1 x +"1 y *"1 0/ _1 + i. 3
    )"1 2
    result2 =: +/, positions x_matches/ x_directions
    
  • Nim

    Could be done more elegantly, but I haven’t bothered yet.

    proc solve(input: string): AOCSolution[int, int] =
      var lines = input.splitLines()
    
      block p1:
        # horiz
        for line in lines:
          for i in 0..line.high-3:
            if line[i..i+3] in ["XMAS", "SAMX"]:
              inc result.part1
    
        for y in 0..lines.high-3:
          #vert
          for x in 0..lines[0].high:
            let word = collect(for y in y..y+3: lines[y][x])
            if word in [@"XMAS", @"SAMX"]:
              inc result.part1
    
          #diag \
          for x in 0..lines[0].high-3:
            let word = collect(for d in 0..3: lines[y+d][x+d])
            if word in [@"XMAS", @"SAMX"]:
              inc result.part1
    
          #diag /
          for x in 3..lines[0].high:
            let word = collect(for d in 0..3: lines[y+d][x-d])
            if word in [@"XMAS", @"SAMX"]:
              inc result.part1
    
      block p2:
        for y in 0..lines.high-2:
          for x in 0..lines[0].high-2:
            let diagNW = collect(for d in 0..2: lines[y+d][x+d])
            let diagNE = collect(for d in 0..2: lines[y+d][x+2-d])
            if diagNW in [@"MAS", @"SAM"] and diagNE in [@"MAS", @"SAM"]:
              inc result.part2
    

    Codeberg repo

  • Haskell

    import Control.Arrow
    import Data.Array.Unboxed
    import Data.List
    
    type Pos = (Int, Int)
    type Board = Array Pos Char
    data Dir = N | NE | E | SE | S | SW | W | NW
    
    target = "XMAS"
    
    parse s = listArray ((1, 1), (n, m)) [l !! i !! j | i <- [0 .. n - 1], j <- [0 .. m - 1]]
      where
        l = lines s
        (n, m) = (length $ head l, length l)
    
    move N = first pred
    move S = first succ
    move E = second pred
    move W = second succ
    move NW = move N . move W
    move SW = move S . move W
    move NE = move N . move E
    move SE = move S . move E
    
    check :: Board -> Pos -> Int -> Dir -> Bool
    check b p i d =
        i >= length target
            || ( inRange (bounds b) p
                    && (b ! p) == (target !! i)
                    && check b (move d p) (succ i) d
               )
    
    checkAllDirs :: Board -> Pos -> Int
    checkAllDirs b p = length . filter (check b p 0) $ [N, NE, E, SE, S, SW, W, NW]
    
    check2 :: Board -> Pos -> Bool
    check2 b p =
        all (inRange (bounds b)) moves && ((b ! p) == 'A') && ("SSMM" `elem` rotations)
      where
        rotations = rots $ (b !) <$> moves
        moves = flip move p <$> [NE, SE, SW, NW]
    
        rots xs = init $ zipWith (++) (tails xs) (inits xs)
    
    part1 b = sum $ checkAllDirs b <$> indices b
    part2 b = length . filter (check2 b) $ indices b
    
    main = getContents >>= print . (part1 &&& part2) . parse
    
  • Uiua

    Just part1 for now as I need to walk the dog :-)

    [edit] Part 2 now added, and a nicer approach than Part 1 in my opinion, if you're able to keep that many dimensions straight in your head :-)

    [edit 2] Tightened it up a bit more.

    Grid ← βŠœβˆ˜βŠΈβ‰ @\n "MMMSXXMASM\nMSAMXMSMSA\nAMXSXMAAMM\nMSAMASMSMX\nXMASAMXAMM\nXXAMMXXAMA\nSMSMSASXSS\nSAXAMASAAA\nMAMMMXMMMM\nMXMXAXMASX"
    
    ≑⍉⍉×⇑4Β€[1_0 0_1 1_1 1_Β―1]         # Use core dirs to build sets of 4-offsets.
    β†―βˆž_2⇑△ Grid                       # Get all possible starting points.
    &p/+β™­βŠž(+∩(≍"XMAS")β‡Œ.⬚@.⊑:Grid≑+Β€) # Part 1. Join the two into a table, use to pick 4-elements, check, count.
    
    Diags   ← [[Β―. 1_1] [Β―. 1_Β―1]]
    BothMas ← /×≑(+∩(≍"MS")β‡Œ.)⬚@.βŠ‘β‰‘+Diags€€ # True if both diags here are MAS.
    &p/+≑BothMas⊚="A"⟜€Grid                 # Part 2. For all "A"s in grid, check diags, count where good.
    
  • Rust

    Ugh. Spent way too long on today's. Should have just used my own grid structure from last year. I will likely refactor to use that. Even though it's likely a super slow implementation, the convenience of dealing with it is better than shoehorning in the grid::Grid<T> from that crate.

    solution (no supporting code)
    use grid::Grid;
    
    use crate::shared::{
        grid2d::{iter_diag_nesw, iter_diag_nwse, Point},
        util::read_lines,
    };
    
    fn parse_grid(input: &[String]) -> Grid<u8> {
        let cols = input.first().unwrap().len();
        Grid::from_vec(
            input
                .iter()
                .flat_map(|row| row.chars().map(|c| c as u8).collect::<Vec<u8>>())
                .collect(),
            cols,
        )
    }
    
    fn part1(grid: &Grid<u8>) -> usize {
        let mut xmas_count = 0;
        let rows = grid
            .iter_rows()
            .map(|d| String::from_utf8(d.copied().collect()).unwrap());
        let cols = grid
            .iter_cols()
            .map(|d| String::from_utf8(d.copied().collect()).unwrap());
        for diag in iter_diag_nesw(grid)
            .chain(iter_diag_nwse(grid))
            .filter_map(|d| {
                if d.len() >= 4 {
                    Some(String::from_utf8(d.clone()).unwrap())
                } else {
                    None
                }
            })
            .chain(rows)
            .chain(cols)
        {
            xmas_count += diag.matches("XMAS").count() + diag.matches("SAMX").count()
        }
        xmas_count
    }
    
    fn part2(grid: &Grid<u8>) -> usize {
        let mut xmas_count = 0;
        let valid = [
            [b'M', b'M', b'S', b'S'],
            [b'M', b'S', b'S', b'M'],
            [b'S', b'M', b'M', b'S'],
            [b'S', b'S', b'M', b'M'],
        ];
        for x in 1..grid.cols() - 1 {
            for y in 1..grid.rows() - 1 {
                if grid.get(y, x) == Some(&b'A')
                    && valid.contains(
                        &(Point::new(x as isize, y as isize)
                            .diagonal_neighbors(grid)
                            .map(|i| i.unwrap_or(0))),
                    )
                {
                    xmas_count += 1;
                }
            }
        }
        xmas_count
    }
    
    pub fn solve() {
        let input = read_lines("inputs/day04.txt");
        let grid = parse_grid(&input);
        println!("Part 1: {}", part1(&grid));
        println!("Part 2: {}", part2(&grid));
    }
    

    And here's a link to the Github if you care to see the gross supporting code :D

  • C#

    public class Day04 : Solver
    {
      private int width, height;
      private char[,] data;
    
      public void Presolve(string input) {
        var lines = input.Trim().Split("\n").ToList();
        height = lines.Count;
        width = lines[0].Length;
        data = new char[height, width];
        for (int i = 0; i < height; i++) {
          for (int j = 0; j < width; j++) {
            data[i, j] = lines[i][j];
          }
        }
      }
    
      private static readonly string word = "XMAS";
    
      public string SolveFirst()
      {
        int counter = 0;
        for (int start_i = 0; start_i < height; start_i++) {
          for (int start_j = 0; start_j < width; start_j++) {
            if (data[start_i, start_j] != word[0]) continue;
            for (int di = -1; di <= 1; di++) {
              for (int dj = -1; dj <= 1; dj++) {
                if (di == 0 && dj == 0) continue;
                int end_i = start_i + di * (word.Length - 1);
                int end_j = start_j + dj * (word.Length - 1);
                if (end_i < 0 || end_j < 0 || end_i >= height || end_j >= width) continue;
                for (int k = 1; k < word.Length; k++) {
                  if (data[start_i + di * k, start_j + dj * k] != word[k]) break;
                  if (k == word.Length - 1) counter++;
                }
              }
            }
          }
        }
        return counter.ToString();
      }
    
      public string SolveSecond()
      {
        int counter = 0;
        for (int start_i = 1; start_i < height - 1; start_i++) {
          for (int start_j = 1; start_j < width - 1; start_j++) {
            if (data[start_i, start_j] != 'A') continue;
            int even_mas_starts = 0;
            for (int di = -1; di <= 1; di++) {
              for (int dj = -1; dj <= 1; dj++) {
                if (di == 0 && dj == 0) continue;
                if ((di + dj) % 2 != 0) continue;
                if (data[start_i + di, start_j + dj] != 'M') continue;
                if (data[start_i - di, start_j - dj] != 'S') continue;
                even_mas_starts++;
              }
            }
            if (even_mas_starts == 2) counter++;
          }
        }
        return counter.ToString();
      }
    }
    
  • Rust

    I had a hunch about part two that didn't pay off, so I over-coded this instead of just using an array of arrays.

    use std::{fs, str::FromStr};
    
    use color_eyre::eyre::{Report, Result};
    
    #[derive(Debug, Copy, Clone)]
    enum Direction {
        N,
        NE,
        E,
        SE,
        S,
        SW,
        W,
        NW,
    }
    
    impl Direction {
        fn all() -> &'static [Direction] {
            &[
                Direction::N,
                Direction::NE,
                Direction::E,
                Direction::SE,
                Direction::S,
                Direction::SW,
                Direction::W,
                Direction::NW,
            ]
        }
    }
    
    #[derive(Debug, PartialEq, Eq)]
    struct WordSearch {
        grid: Vec<char>,
        width: usize,
        height: usize,
    }
    
    impl FromStr for WordSearch {
        type Err = Report;
    
        fn from_str(s: &str) -> Result<Self, Self::Err> {
            let grid: Vec<_> = s.chars().filter(|&ch| ch != '\n').collect();
            let width = s
                .chars()
                .position(|ch| ch == '\n')
                .ok_or_else(|| Report::msg("grid width cannot be zero, or one line"))?;
            let height = grid.len() / width;
            Ok(Self {
                grid,
                width,
                height,
            })
        }
    }
    
    impl WordSearch {
        fn neighbour(&self, i: usize, dir: Direction) -> Option<usize> {
            let width = self.width;
            let length = self.grid.len();
            use Direction::*;
            match dir {
                N if i >= width => Some(i - width),
                NE if i >= width && i % width != width - 1 => Some(i - width + 1),
                E if i % width != width - 1 => Some(i + 1),
                SE if i + width + 1 < length && i % width != width - 1 => Some(i + width + 1),
                S if i + width < length => Some(i + width),
                SW if i + width - 1 < length && i % width != 0 => Some(i + width - 1),
                W if i % width != 0 => Some(i - 1),
                NW if i >= width && i % width != 0 => Some(i - width - 1),
                _ => None,
            }
        }
    
        fn word_count(&self, word: &str) -> Result<usize> {
            let mut found = 0;
            for i in 0..self.grid.len() {
                for dir in Direction::all() {
                    if self.word_present(word, i, *dir) {
                        found += 1;
                    }
                }
            }
            Ok(found)
        }
    
        fn x_count(&self) -> Result<usize> {
            let mut found = 0;
            for i in 0..self.grid.len() {
                if self.x_present(i) {
                    found += 1;
                }
            }
            Ok(found)
        }
    
        fn word_present(&self, word: &str, location: usize, dir: Direction) -> bool {
            let mut next = Some(location);
            for ch in word.chars() {
                let i = if let Some(i) = next {
                    i
                } else {
                    // Off the edge
                    return false;
                };
    
                if self.grid[i] != ch {
                    return false;
                }
                next = self.neighbour(i, dir);
            }
            true
        }
    
        fn x_present(&self, location: usize) -> bool {
            if self.grid.get(location) != Some(&'A') {
                return false;
            }
            let diags = [
                (Direction::NE, Direction::SW),
                (Direction::NW, Direction::SE),
            ];
            diags.iter().all(|(dir_a, dir_b)| {
                let Some(a_idx) = self.neighbour(location, *dir_a) else {
                    return false;
                };
                let Some(b_idx) = self.neighbour(location, *dir_b) else {
                    return false;
                };
                let a = self.grid[a_idx];
                let b = self.grid[b_idx];
                (a == 'M' && b == 'S') || (b == 'M' && a == 'S')
            })
        }
    }
    
    fn part1(filepath: &str) -> Result<usize> {
        let input = fs::read_to_string(filepath)?;
        let grid = WordSearch::from_str(&input)?;
        grid.word_count("XMAS")
    }
    
    fn part2(filepath: &str) -> Result<usize> {
        let input = fs::read_to_string(filepath)?;
        let grid = WordSearch::from_str(&input)?;
        grid.x_count()
    }
    
    fn main() -> Result<()> {
        color_eyre::install()?;
    
        println!("Part 1: {}", part1("d04/input.txt")?);
        println!("Part 2: {}", part2("d04/input.txt")?);
        Ok(())
    }
    
  • Uiua

    This one was nice. The second part seemed quite daunting at first but wasn't actually that hard in the end.

    Run with example input here

    Row    ← βŒ• "XMAS"
    RevRow ← βŒ•"SAMX"
    Sum    ← /+/+
    Count  ← +∩SumβŠƒRow RevRow
    
    PartOne ← (
      &rs ∞ &fo "input-4.txt"
      βŠœβˆ˜β‰ @\n.
      βŠ™+⟜∩CountβŸœβ‰ # horizontal and vertical search
      ⟜(/+⧈(Countβ‰β‰‘β¬š@ ↻⇑⧻.)4)
      /+⧈(Countβ‰β‰‘β¬š@ ↻¯⇑⧻.)4
      ++
    )
    
    Mask ← Β°βŠšΓ—2⇑5
    # Create variations of X-MAS
    Vars ← (
      ["M S"
       " A "
       "M S"]
      ≑♭[βˆ©βŸœβ‰]β‰‘β‡Œ.
      Mask
      ⊏0βŠžβ–½Β€
    )
    
    PartTwo ← (
      &rs ∞ &fo "input-4.txt"
      βŠœβˆ˜β‰ @\n.
      ⧈(/+β™­βŠžβ‰βŠ™Β€Varsβ–½Maskβ™­)3_3
      Sum
    )
    
    &p "Day 4:"
    &pf "Part 1: "
    &p PartOne
    &pf "Part 2: "
    &p PartTwo
    
  • Factor

    spoiler
    : get-input ( -- rows )
      "vocab:aoc-2024/04/input.txt" utf8 file-lines ;
    
    : verticals ( rows -- lines )
      [ dimension last [0..b) ] keep cols ;
    
    : slash-origins ( rows -- coords )
      dimension
      [ first [0..b) [ 0 2array ] map ] [
        first2 [ 1 - ] [ 1 (a..b] ] bi*
        [ 2array ] with map
      ] bi append ;
    
    : backslash-origins ( rows -- coords )
      dimension first2
      [ [0..b) [ 0 2array ] map ]
      [ 1 (a..b] [ 0 swap 2array ] map ] bi* append ;
    
    : slash ( rows origin -- line )
      first2
      [ 0 [a..b] ]
      [ pick dimension last [a..b) ] bi* zip
      swap matrix-nths ;
    
    : backslash ( rows origin -- line )
      [ dup dimension ] dip first2
      [ over first [a..b) ]
      [ pick last [a..b) ] bi* zip nip
      swap matrix-nths ;
    
    : slashes ( rows -- lines )
      dup slash-origins
      [ slash ] with map ;
    
    : backslashes ( rows -- lines )
      dup backslash-origins
      [ backslash ] with map ;
    
    : word-count ( line word -- n )
      dupd [ reverse ] dip
      '[ _ subseq-indices length ] bi@ + ;
    
    : part1 ( -- n )
      get-input
      { [ ] [ verticals ] [ slashes ] [ backslashes ] } cleave-array concat
      [ "XMAS" word-count ] map-sum ;
    
    : origin-adistances ( rows origins line-quot: ( rows origin -- line ) -- origin-adistances-assoc )
      with zip-with
      "MAS" "SAM" [ '[ [ _ subseq-indices ] map-values ] ] bi@ bi append
      harvest-values
      [ [ 1 + ] map ] map-values ; inline
    
    : a-coords ( origin-adistances coord-quot: ( adistance -- row-delta col-delta ) -- coords )
      '[ first2 [ @ 2array v+ ] with map ] map-concat ; inline
    
    : slash-a-coords ( rows -- coords )
      dup slash-origins [ slash ] origin-adistances
      [ [ 0 swap - ] keep ] a-coords ;
    
    : backslash-a-coords ( rows -- coords )
      dup backslash-origins [ backslash ] origin-adistances
      [ dup ] a-coords ;
    
    : part2 ( -- n )
      get-input [ slash-a-coords ] [ backslash-a-coords ] bi
      intersect length ;
    

    Better viewed on GitHub.

  • Raku

    Oof, my struggle to make custom index walking paths for part 1 did not pay off for part 2.

    Solution
    sub MAIN($input) {
        my $file = (open $input).slurp;
        my @grid is List = $file.linesΒ».combΒ».list;
        my @transposedGrid is List = [Z] @grid;
        my @reversedGrid is List = @gridΒ».reverse;
        my @transposedReversedGrid is List = @transposedGridΒ».reverse;
    
        my @horizontalScanRows is List = generateScanHorizontal(@grid);
        my @transposedHorizontalScanRows is List = generateScanHorizontal(@transposedGrid);
    
        my @part-one-counts = [];
        @part-one-counts.push(count-xmas(@grid, @horizontalScanRows)); # Right
        @part-one-counts.push(count-xmas(@transposedGrid, @transposedHorizontalScanRows)); # Down
        @part-one-counts.push(count-xmas(@reversedGrid, @horizontalScanRows)); # Left
        @part-one-counts.push(count-xmas(@transposedReversedGrid, @transposedHorizontalScanRows)); # Up
    
        my @diagonalScanRows is List = generateScanDiagonal(@grid);
        my @transposedDiagonalScanRows is List = generateScanDiagonal(@transposedGrid);
        @part-one-counts.push(count-xmas(@grid, @diagonalScanRows)); # Down Right
        @part-one-counts.push(count-xmas(@grid, @diagonalScanRowsΒ».reverse)); # Up Left
        @part-one-counts.push(count-xmas(@reversedGrid, @diagonalScanRows)); # Down Left
        @part-one-counts.push(count-xmas(@reversedGrid, @diagonalScanRowsΒ».reverse)); # Up Right
    
        my $part-one-solution = @part-one-counts.sum;
        say "part 1: $part-one-solution";
    
    
        my @part-two-counts = [];
        @part-two-counts.push(countGridMatches(@grid, (<M . S>,<. A .>,<M . S>)));
        @part-two-counts.push(countGridMatches(@grid, (<S . S>,<. A .>,<M . M>)));
        @part-two-counts.push(countGridMatches(@grid, (<S . M>,<. A .>,<S . M>)));
        @part-two-counts.push(countGridMatches(@grid, (<M . M>,<. A .>,<S . S>)));
    
        my $part-two-solution = @part-two-counts.sum;
        say "part 2: $part-two-solution";
    
    }
    
    sub count-xmas(@grid, @scanRows) {
        my $xmas-count = 0;
        for @scanRows -> @scanRow {
            my $xmas-pos = 0;
            for @scanRow -> @pos {
                my $char = @grid[@pos[0]][@pos[1]];
                if "X" eq $char {
                    $xmas-pos = 1;
                }elsif <X M A S>[$xmas-pos] eq $char {
                    if $xmas-pos == 3 {
                        $xmas-pos = 0;
                        $xmas-count += 1;
                    } else {
                        $xmas-pos += 1;
                    }
                } else {
                    $xmas-pos = 0;
                }
            }
        }
        return $xmas-count;
    }
    
    sub generateScanHorizontal(@grid) {
        # Horizontal
        my $rows = @grid.elems;
        my $cols = @grid[0].elems;
        my @scanRows = ();
        for 0..^$rows -> $row {
            my @scanRow = ();
            for 0..^$cols -> $col {
                @scanRow.push(($row, $col));
            }
            @scanRows.push(@scanRow);
        }
        return @scanRows.ListΒ».List;
    }
    
    sub generateScanDiagonal(@grid) {
        # Down-right diagonal
        my $rows = @grid.elems;
        my $cols = @grid[0].elems;
        my @scanRows = ();
        for 0..^($rows + $cols - 1) -> $diag {
            my @scanRow = ();
            my $starting-row = max(-$cols + $diag + 1, 0);
            my $starting-col = max($rows - $diag - 1, 0);
            my $diag-len = min($rows - $starting-row, $cols - $starting-col);
            for 0..^$diag-len -> $diag-pos {
                @scanRow.push(($starting-row + $diag-pos, $starting-col + $diag-pos));
            }
            @scanRows.push(@scanRow);
        }
        return @scanRows.ListΒ».List;
    }
    
    sub countGridMatches(@grid, @needle) {
        my $count = 0;
        for 0..(@grid.elems - @needle.elems) -> $top {
            TOP-LEFT:
            for 0..(@grid[$top].elems - @needle[0].elems) -> $left {
                for 0..^@needle.elems -> $row-offset {
                    for 0..^@needle[$row-offset].elems -> $col-offset {
                        my $needle-char = @needle[$row-offset][$col-offset];
                        next if $needle-char eq ".";
                        next TOP-LEFT if $needle-char ne @grid[$top+$row-offset][$left+$col-offset];
                    }
                }
                $count += 1;
            }
        }
        return $count;
    }
    

    github

  • Go

    Just a bunch of ifs and bounds checking. Part 2 was actually simpler.

    Code
    func part1(W [][]rune) {
    	m := len(W)
    	n := len(W[0])
    	xmasCount := 0
    
    	for i := 0; i < m; i++ {
    		for j := 0; j < n; j++ {
    			if W[i][j] != 'X' {
    				continue
    			}
    			if j < n-3 && W[i][j+1] == 'M' && W[i][j+2] == 'A' && W[i][j+3] == 'S' {
    				// Horizontal left to right
    				xmasCount++
    			}
    			if j >= 3 && W[i][j-1] == 'M' && W[i][j-2] == 'A' && W[i][j-3] == 'S' {
    				// Horizontal right to left
    				xmasCount++
    			}
    			if i < m-3 && W[i+1][j] == 'M' && W[i+2][j] == 'A' && W[i+3][j] == 'S' {
    				// Vertical up to down
    				xmasCount++
    			}
    			if i >= 3 && W[i-1][j] == 'M' && W[i-2][j] == 'A' && W[i-3][j] == 'S' {
    				// Vertical down to up
    				xmasCount++
    			}
    			if j < n-3 && i < m-3 && W[i+1][j+1] == 'M' && W[i+2][j+2] == 'A' && W[i+3][j+3] == 'S' {
    				// Diagonal left to right and up to down
    				xmasCount++
    			}
    			if j >= 3 && i < m-3 && W[i+1][j-1] == 'M' && W[i+2][j-2] == 'A' && W[i+3][j-3] == 'S' {
    				// Diagonal right to left and up to down
    				xmasCount++
    			}
    			if j < n-3 && i >= 3 && W[i-1][j+1] == 'M' && W[i-2][j+2] == 'A' && W[i-3][j+3] == 'S' {
    				// Diagonal left to right and down to up
    				xmasCount++
    			}
    			if j >= 3 && i >= 3 && W[i-1][j-1] == 'M' && W[i-2][j-2] == 'A' && W[i-3][j-3] == 'S' {
    				// Diagonal right to left and down to up
    				xmasCount++
    			}
    		}
    	}
    
    	fmt.Println(xmasCount)
    }
    
    func part2(W [][]rune) {
    	m := len(W)
    	n := len(W[0])
    	xmasCount := 0
    
    	for i := 0; i <= m-3; i++ {
    		for j := 0; j <= n-3; j++ {
    			if W[i+1][j+1] != 'A' {
    				continue
    			}
    			if W[i][j] == 'M' && W[i][j+2] == 'M' && W[i+2][j] == 'S' && W[i+2][j+2] == 'S' {
    				xmasCount++
    			} else if W[i][j] == 'M' && W[i][j+2] == 'S' && W[i+2][j] == 'M' && W[i+2][j+2] == 'S' {
    				xmasCount++
    			} else if W[i][j] == 'S' && W[i][j+2] == 'S' && W[i+2][j] == 'M' && W[i+2][j+2] == 'M' {
    				xmasCount++
    			} else if W[i][j] == 'S' && W[i][j+2] == 'M' && W[i+2][j] == 'S' && W[i+2][j+2] == 'M' {
    				xmasCount++
    			}
    		}
    	}
    
    	fmt.Println(xmasCount)
    }
    
    func main() {
    	file, _ := os.Open("input.txt")
    	defer file.Close()
    	scanner := bufio.NewScanner(file)
    
    	var W [][]rune
    	for scanner.Scan() {
    		line := scanner.Text()
    		W = append(W, []rune(line))
    	}
    
    	part1(W)
    	part2(W)
    }
    
  • Python

    Essentially I'm extracting strings from the word search and compare them to the desired value. For part one that means extracting from an X in eight directions. Because I'm reading from the central X outwards, I don't need to reverse any of them.
    Part two reads two strings in an X-shape around the coordinates of each X. The resulting strings are filtered down to include only "MAS" and "SAM". If there are exactly two strings we found an X-MAS.

    from pathlib import Path
    
    
    def parse_input(input: str) -> list[str]:
        return input.strip().splitlines()
    
    
    def extract_strings_one(m: int, n: int, haystack: list[str], l: int = 4) -> list[str]:
        result = []
        # Right
        if m + l <= len(haystack[n]):
            result.append(haystack[n][m : m + l])
        # Up-Right
        if m + l <= len(haystack[n]) and n > l - 2:
            result.append("".join([haystack[n - i][m + i] for i in range(l)]))
        # Up
        if n > l - 2:
            result.append("".join([haystack[n - i][m] for i in range(l)]))
        # Up-Left
        if m > l - 2 and n > l - 2:
            result.append("".join([haystack[n - i][m - i] for i in range(l)]))
        # Left
        if m > l - 2:
            result.append("".join([haystack[n][m - i] for i in range(l)]))
        # Down-Left
        if m > l - 2 and n + l <= len(haystack):
            result.append("".join([haystack[n + i][m - i] for i in range(l)]))
        # Down
        if n + l <= len(haystack):
            result.append("".join([haystack[n + i][m] for i in range(l)]))
        # Down-Right
        if m + l <= len(haystack[n]) and n + l <= len(haystack):
            result.append("".join([haystack[n + i][m + i] for i in range(l)]))
        return result
    
    
    def extract_strings_two(m: int, n: int, haystack: list[str], d: int = 1) -> list[str]:
        result = []
        if 0 <= m - d and m + d < len(haystack[n]) and 0 <= n - d and n + d < len(haystack):
            result.append("".join([haystack[n + i][m + i] for i in range(-d, d + 1)]))
            result.append("".join([haystack[n - i][m + i] for i in range(-d, d + 1)]))
        return result
    
    
    def part_one(input: str) -> int:
        lines = parse_input(input)
        xmas_count = 0
        for i, line in enumerate(lines):
            x = line.find("X", 0)
            while x != -1:
                xmas_count += len(
                    list(filter(lambda s: s == "XMAS", extract_strings_one(x, i, lines)))
                )
                x = line.find("X", x + 1)
        return xmas_count
    
    
    def part_two(input: str) -> int:
        lines = parse_input(input)
        x_mas_count = 0
        for i, line in enumerate(lines[1:-1], 1):
            a = line.find("A", 0)
            while a != -1:
                if (
                    len(
                        list(
                            filter(
                                lambda s: s in ("MAS", "SAM"),
                                extract_strings_two(a, i, lines),
                            )
                        )
                    )
                    == 2
                ):
                    x_mas_count += 1
                a = line.find("A", a + 1)
        return x_mas_count
    
    
    if __name__ == "__main__":
        input = Path("input").read_text("utf-8")
        print(part_one(input))
        print(part_two(input))
    
  • Part 1:

    with open('input') as data:
        lines = [l.strip() for l in data.readlines()]
    # Remove empty line
    class Result():
        def __init__(self):
            self.count = 0
    
    
    def analyze_lines(lines: list[str]):
        ans.count += get_rights(lines)
        ans.count += get_ups(lines)
        ans.count += get_downs(lines)
        ans.count += get_down_rights(lines)
        ans.count += get_down_lefts(lines)
        ans.count += get_up_lefts(lines)
        ans.count += get_up_rights(lines)
        for line in lines:
            ans.count += get_lefts(line)
    
    
    
    
    def get_ups(lines: list[str]) -> int:
        up_count = 0
        for i_l, line in enumerate(lines):
            result = ""
            if i_l < 3:
                continue
            for i_c, char in enumerate(line):
                if char == "X":
                    result = char
                    result += "".join([lines[i_l - n][i_c] for n in range(1, 4)])
                    if result == "XMAS":
                        up_count += 1
                    else:
                        result = ""
        return up_count
    
    
    def get_downs(lines: list[str]) -> int:
        down_count = 0
        for i_l, l in enumerate(lines):
            result = ""
            for i_c, c in enumerate(l):
                if c == "X":
                    result += c
                    try:
                        result += "".join([lines[i_l + n][i_c] for n in range(1, 4)])
                    except IndexError:
                        result = ""
                        continue
                    finally:
                        if result == "XMAS":
                            down_count += 1
                        result = ""
        return down_count
    
    
            
    def get_lefts(line: str) -> int:
        left_count = 0
        for i, char in enumerate(line):
            if i < 3:
                continue
            elif char == "X" and line[i-1] == "M" and line[i-2] == "A" and line[i-3] == "S":
                left_count += 1
        return left_count
    
    
    def get_rights(lines: list[str]) -> int:
        right_counts = 0
        for l in lines:
            right_counts += l.count("XMAS")
        return right_counts
    
    def get_down_rights(lines: list[str]) -> int:
        down_right_count = 0
        for i_l, l in enumerate(lines):
            result = ""
            for i_c, c in enumerate(l):
                if c == "X":
                    result += c
                    try:
                        result += "".join(
                                [lines[i_l + n][i_c + n] for n in range(1,4)]
                                )
                    except IndexError:
                        result = ""
                        continue
                    finally:
                        if result == "XMAS":
                            down_right_count += 1
                        result = ""
        return down_right_count
    
    def get_down_lefts(lines: list[str]) -> int:
        down_left_count = 0
        for i_l, l in enumerate(lines):
            result = ""
            for i_c, c in enumerate(l):
                if i_c < 3:
                    continue
                if c == "X":
                    result += c
                    try:
                        result += "".join(
                                [lines[i_l + n][i_c - n] for n in range(1,4)]
                                )
                    except IndexError:
                        result = ""
                        continue
                    finally:
                        if result == "XMAS":
                            down_left_count += 1
                        result = ""
        return down_left_count
    
    def get_up_rights(lines: list[str]) -> int:
        up_right_count = 0
        for i_l, l in enumerate(lines):
            result = ""
            if i_l < 3:
                continue
            for i_c, c in enumerate(l):
                if c == "X":
                    result += c
                    try:
                        result += "".join(
                                [lines[i_l - n][i_c + n] for n in range(1,4)]
                                )
                    except IndexError:
                        result = ""
                        continue
                    finally:
                        if result == "XMAS":
                            up_right_count += 1
                        result = ""
        return up_right_count
    
    
    def get_up_lefts(lines: list[str]) -> int:
        up_left_count = 0
        for i_l, l in enumerate(lines):
            result = ""
            if i_l < 3:
                continue
            for i_c, c in enumerate(l):
                if i_c < 3:
                    continue
                if c == "X":
                    result = c
                    try:
                        result += "".join(
                                [lines[i_l - n][i_c - n] for n in range(1,4)]
                                )
                    except IndexError as e:
                        result = ""
                        continue
                    finally:
                        if result == "XMAS":
                            up_left_count += 1
                        result = ""
        return up_left_count
    
    ans = Result()
    analyze_lines(lines)
    print(ans.count)
    

    Part 2:

    with open('input') as data:
        lines = list(filter(lambda x: x != '', [l.strip() for l in data.readlines()]))
        
    xmases = 0
    for i in range(1, len(lines)):
        for j in range(1, len(lines[i])):
            if lines[i][j] == "A":
                try:
                    up_back = lines[i-1][j-1]
                    down_over = lines[i+1][j+1]
                    up_over = lines[i-1][j+1]
                    down_back = lines[i+1][j-1]
                except IndexError:
                    continue
                else:
                    if {up_back, down_over} == set("MS") and {up_over, down_back} == set("MS"):
                        xmases += 1
    
    print(xmases)
    

    I actually found part two A LOT easier than part 1.

  • python

    solution
    import aoc
    
    def setup():
        return (aoc.get_lines(4, padded=(True, '.', 3)), 0)
    
    def one():
        lines, acc = setup()
        for row, l in enumerate(lines):
            for col, c in enumerate(l):
                if c == 'X':
                    w = l[col - 3:col + 1]
                    e = l[col: col + 4]
                    n = c + lines[row - 1][col] + \
                        lines[row - 2][col] + lines[row - 3][col]
                    s = c + lines[row + 1][col] + \
                        lines[row + 2][col] + lines[row + 3][col]
                    nw = c + lines[row - 1][col - 1] + \
                        lines[row - 2][col - 2] + lines[row - 3][col - 3]
                    ne = c + lines[row - 1][col + 1] + \
                        lines[row - 2][col + 2] + lines[row - 3][col + 3]
                    sw = c + lines[row + 1][col - 1] + \
                        lines[row + 2][col - 2] + lines[row + 3][col - 3]
                    se = c + lines[row + 1][col + 1] + \
                        lines[row + 2][col + 2] + lines[row + 3][col + 3]
                    for word in [w, e, n, s, nw, ne, sw, se]:
                        if word in ['XMAS', 'SAMX']:
                            acc += 1
        print(acc)
    
    def two():
        lines, acc = setup()
        for row, l in enumerate(lines):
            for col, c in enumerate(l):
                if c == 'A':
                    l = lines[row - 1][col - 1] + c + lines[row + 1][col + 1]
                    r = lines[row + 1][col - 1] + c + lines[row - 1][col + 1]
                    if l in ['MAS', 'SAM'] and r in ['MAS', 'SAM']:
                        acc += 1
        print(acc)
    
    one()
    two()
    
  • Rust

    One of those with running through tricky grid indices. The vector types from the euclid crate helped in dealing with positions.

    Code
    use euclid::{vec2, default::*};
    
    fn count_xmas(grid: &[&[u8]], pos: (usize, usize)) -> u32 {
        if grid[pos.1][pos.0] != b'X' {
            return 0
        }
    
        let bounds = Rect::new(Point2D::origin(), Size2D::new(grid[0].len() as i32, grid.len() as i32));
        const DIRS: [Vector2D<i32>; 8] = [
            vec2(1, 0), vec2(-1, 0), vec2(0, 1), vec2(0, -1),
            vec2(1, 1), vec2(1, -1), vec2(-1, 1), vec2(-1, -1),
        ];
        let mut count = 0;
        for dir in DIRS {
            let mut cur = Point2D::from(pos).to_i32();
            let mut found = true;
            for letter in [b'M', b'A', b'S'] {
                cur += dir;
                if !bounds.contains(cur) || grid[cur.y as usize][cur.x as usize] != letter {
                    found = false;
                    break
                }
            }
            if found {
                count += 1;
            }
        }
        count
    }
    
    fn part1(input: String) {
        let grid = input.lines().map(|l| l.as_bytes()).collect::<Vec<_>>();    
        let count = (0..grid.len()).map(|y| {
                (0..grid[y].len()).map(|x| count_xmas(&grid, (x, y))).sum::<u32>()
            })
            .sum::<u32>();
        println!("{count}");
    }
    
    fn is_x_mas(grid: &[&[u8]], pos: (usize, usize)) -> bool {
        if grid[pos.1][pos.0] != b'A' {
            return false
        }
    
        const DIRS: [Vector2D<i32>; 4] = [vec2(1, -1), vec2(1, 1), vec2(-1, 1), vec2(-1, -1)];
        let pos = Point2D::from(pos).to_i32();
        (0..4).any(|d| {
            let m_pos = [pos + DIRS[d], pos + DIRS[(d + 1) % 4]]; // 2 adjacent positions of M
            let s_pos = [pos + DIRS[(d + 2) % 4], pos + DIRS[(d + 3) % 4]]; // others S
            m_pos.iter().all(|p| grid[p.y as usize][p.x as usize] == b'M') &&
            s_pos.iter().all(|p| grid[p.y as usize][p.x as usize] == b'S')
        })
    }
    
    fn part2(input: String) {
        let grid = input.lines().map(|l| l.as_bytes()).collect::<Vec<_>>();    
        let count = (1..grid.len() - 1).map(|y| {
                (1..grid[y].len() - 1).filter(|&x| is_x_mas(&grid, (x, y))).count()
            })
            .sum::<usize>();
        println!("{count}");
    }
    
    util::aoc_main!();
    

    (also on github)

  • C

    What can I say, bunch of for loops! I add a 3 cell border to avoid having to do bounds checking in the inner loops.

    Code
    #include "common.h"
    #define GZ 146
    
    int main(int argc, char **argv) {
    	static char g[GZ][GZ];
    	static const char w[] = "XMAS";
    	int p1=0,p2=0, x,y, m,i;
    
    	if (argc > 1) DISCARD(freopen(argv[1], "r", stdin));
    	for (y=3; y<GZ && fgets(g[y]+3, GZ-3, stdin); y++) ;
    
    	for (y=3; y<GZ-3; y++)
    	for (x=3; x<GZ-3; x++) {
    		for (m=1,i=0; i<4; i++) {m &= g[y+i][x]==w[i];} p1+=m;
    		for (m=1,i=0; i<4; i++) {m &= g[y-i][x]==w[i];} p1+=m;
    		for (m=1,i=0; i<4; i++) {m &= g[y][x+i]==w[i];} p1+=m;
    		for (m=1,i=0; i<4; i++) {m &= g[y][x-i]==w[i];} p1+=m;
    		for (m=1,i=0; i<4; i++) {m &= g[y+i][x+i]==w[i];} p1+=m;
    		for (m=1,i=0; i<4; i++) {m &= g[y-i][x-i]==w[i];} p1+=m;
    		for (m=1,i=0; i<4; i++) {m &= g[y+i][x-i]==w[i];} p1+=m;
    		for (m=1,i=0; i<4; i++) {m &= g[y-i][x+i]==w[i];} p1+=m;
    
    		p2 += g[y+1][x+1]=='A' &&
    		      ((g[y][x]  =='M' && g[y+2][x+2]=='S')  ||
    		       (g[y][x]  =='S' && g[y+2][x+2]=='M')) &&
    		      ((g[y+2][x]=='M' && g[y][x+2]  =='S')  ||
    		       (g[y+2][x]=='S' && g[y][x+2]  =='M'));
    	}
    
    	printf("04: %d %d\n", p1, p2);
    }
    

    https://github.com/sjmulder/aoc/blob/master/2024/c/day04.c

  • This one was a little bit of a pain. I loved it.

    TypeScript

    Solution
    import { AdventOfCodeSolutionFunction } from "./solutions";
    
    enum Direction {
        UP,
        UP_RIGHT,
        RIGHT,
        BOTTOM_RIGHT,
        BOTTOM,
        BOTTOM_LEFT,
        LEFT,
        UP_LEFT,
    };
    
    const ALL_DIRECTIONS = [
        Direction.RIGHT,
        Direction.BOTTOM_RIGHT,
        Direction.BOTTOM,
        Direction.BOTTOM_LEFT,
        Direction.LEFT,
        Direction.UP_LEFT,
        Direction.UP,
        Direction.UP_RIGHT,
    ];
    
    const check_coords = (grid: Array<Array<string>>, x: number, y: number) => {
        return y >= grid.length ||
            y < 0 ||
            x >= grid[y].length ||
            x < 0
    }
    
    const search_direction = (grid: Array<Array<string>>, x: number, y: number, direction: Direction, find: Array<string>) => {
        // exit conditions
        // no more to find
        if (find.length == 0)
            return 1; // found the end
    
        // invalid coords
        if (check_coords(grid, x, y))
            return 0;
    
        // make new mutable list
        const newFind = [...find];
        const searchChar = newFind.shift();
    
        // wrong character
        if (grid[y][x] !== searchChar)
            return 0;
    
        switch (direction) {
            case Direction.UP:
                return search_direction(grid, x, y + 1, direction, newFind);
    
            case Direction.UP_RIGHT:
                return search_direction(grid, x + 1, y + 1, direction, newFind);
    
            case Direction.RIGHT:
                return search_direction(grid, x + 1, y, direction, newFind);
    
            case Direction.BOTTOM_RIGHT:
                return search_direction(grid, x + 1, y - 1, direction, newFind);
    
            case Direction.BOTTOM:
                return search_direction(grid, x, y - 1, direction, newFind);
    
            case Direction.BOTTOM_LEFT:
                return search_direction(grid, x - 1, y - 1, direction, newFind);
    
            case Direction.LEFT:
                return search_direction(grid, x - 1, y, direction, newFind);
    
            case Direction.UP_LEFT:
                return search_direction(grid, x - 1, y + 1, direction, newFind);
    
            default:
                return 0;
        }
    }
    
    const part_1_search = (grid: Array<Array<string>>, x: number, y: number, find: Array<string>) => {
        return ALL_DIRECTIONS.reduce<number>(
            (instances, direction) =>
                instances + search_direction(grid, x, y, direction, find),
            0
        );
    }
    
    const part_2_search = (grid: Array<Array<string>>, x: number, y: number, find: Array<string>) => {
        return (
            search_direction(grid, x - 1, y + 1, Direction.BOTTOM_RIGHT, find) +
            search_direction(grid, x + 1, y + 1, Direction.BOTTOM_LEFT, find) +
            search_direction(grid, x - 1, y - 1, Direction.UP_RIGHT, find) +
            search_direction(grid, x + 1, y - 1, Direction.UP_LEFT, find)
        ) == 2 ? 1 : 0;
    }
    
    export const solution_4: AdventOfCodeSolutionFunction = (input) => {
        const grid = input.split("\n").map(st => st.trim()).map(v => v.split(""));
    
        let part_1 = 0;
        let part_2 = 0;
    
        const find_1 = "XMAS".split("");
        const find_2 = "MAS".split("");
    
        for (let y = 0; y < grid.length; y++) {
            for (let x = 0; x < grid[y].length; x++) {
                part_1 += part_1_search(grid, x, y, find_1);
                part_2 += part_2_search(grid, x, y, find_2);
            }
        }
    
        return {
            part_1,
            part_2,
        };
    }
    

    Felt like this code quality is better than what I usually output :)

  • Nim

    import ../aoc, strutils
    
    type
      Cell* = tuple[x,y:int]
    
    #the 8 grid direction
    const directions : array[8, Cell] = [
      (1, 0), (-1, 0),
      (0, 1), ( 0,-1),
      (1, 1), (-1,-1),
      (1,-1), (-1, 1)
    ]
    
    const xmas = "XMAS"
    
    #part 1
    proc searchXMAS*(grid:seq[string], x,y:int):int =
      #search in all 8 directions (provided we can find a full match in that direction)
      let w = grid[0].len
      let h = grid.len
      
      for dir in directions:
        # check if XMAS can even fit
        let xEnd = x + dir.x * 3
        let yEnd = y + dir.y * 3
        if xEnd < 0 or xEnd >= w or
           yEnd < 0 or yEnd >= h:
          continue;
        
        #step along direction
        var matches = 0
        for s in 0..3:
          if grid[y + dir.y * s][x + dir.x * s] == xmas[s]:
            inc matches
            
        if matches == xmas.len:
          inc result
    
    #part 2
    proc isMAS(grid:seq[string], c, o:Cell):bool=
      let ca : Cell = (c.x+o.x, c.y+o.y)
      let cb : Cell = (c.x-o.x, c.y-o.y)
      let a = grid[ca.y][ca.x]
      let b = grid[cb.y][cb.x]
      (a == 'M' and b == 'S') or (a == 'S' and b == 'M')
    
    proc searchCrossMAS*(grid:seq[string], x,y:int):bool =
      grid[y][x] == 'A' and
      grid.isMAS((x,y), (1,1)) and
      grid.isMAS((x,y), (1,-1))
    
    proc solve*(input:string): array[2,int] =
      let grid = input.splitLines
      let w = grid[0].len
      let h = grid.len
      
      #part 1
      for y in 0..<h:
        for x in 0..<w:
          result[0] += grid.searchXMAS(x, y)
      
      #part 2, skipping borders
      for y in 1..<h-1:
        for x in 1..<w-1:
          result[1] += (int)grid.searchCrossMAS(x, y)
    

    Part 1 was done really quickly. Part 2 as well, but the result was not accepted...

    Turns out +MAS isn't actually a thing :P

  • Python

    <spoiler title>
    def read_input(path):
        with open(path) as f:
            lines = f.readlines()
            for i, line in enumerate(lines):
                ln = line.replace("\n","")
                lines[i] = ln
        return lines
    
    def find_X(lines):
        Xes = []
        for j, line in enumerate(lines):
            ind = [i for i, ltr in enumerate(line) if ltr == "X"]
            for i in ind:
                Xes.append((j,i))
        return Xes
    
    def find_M(lines, x, dim):
        # Check for Ms
        M_dirs = []
        for i in [-1, 0, 1]:
            x_ind = x[0] + i
            if x_ind>=0 and x_ind<dim:
                for j in [-1, 0, 1]:
                    y_ind = x[1]+j
                    if y_ind>=0 and y_ind<dim:
                        if lines[x_ind][y_ind] == "M":
                            M = [(x_ind, y_ind), (i,j)]
                            M_dirs.append(M)
        return M_dirs
    
    def check_surroundings(loc, lines, check_char, direction):
        max = len(lines)-1
        check_lock = [loc[i]+direction[i] for i in range(len(loc))]
        if all(i>=0 and i<=max for i in check_lock) and check_char in str(lines[check_lock[0]][check_lock[1]]):
            return True
        else:
            return False
    
    def part_one(lines):
        ans = 0 
    
        X = find_X(lines)
        dim = len(lines[0])
        for x in X:
            M = find_M(lines, x, dim)
            for m in M:
                loc = m[0]
                dir = m[1]
                
                if not check_surroundings(loc, lines, 'A', dir):
                    continue
                
                loc = [loc[0]+dir[0], loc[1]+dir[1]]
                if not all(i>=0 and i<=dim-1 for i in loc):
                    continue
                if not check_surroundings(loc, lines, 'S', dir):
                    continue
                
                ans+=1
        return ans
    
    def extract_square(lines, loc):
        str = ""
        for i in range(-1,2,1):
            for j in range(-1,2,1):
                x_ind = loc[0]+i
                y_ind = loc[1]+j
                if not all(p>=0 and p<=len(lines[0])-1 for p in [x_ind, y_ind]):
                    raise ValueError("The given lock is at the edge of the grid and therefore will not produce a square")
                str += lines[x_ind][y_ind]
        return str
    
    def check_square(square):
        if not square[4]=="A":
            return False
        elif not ((square[0]=="M" and square[8]=="S") or (square[0]=="S" and square[8]=="M")):
            return False
        elif not ((square[2]=="M" and square[6]=="S") or (square[2]=="S" and square[6]=="M")):
            return False
        else: return True
    
    def part_two(lines):
        ans = 0
        dim = len(lines[0])
        for i in range(1,dim-1):
            for j in range(1,dim-1):
                square = extract_square(lines, (i,j))
                if check_square(square):
                    ans += 1
        return ans
    
    path = r'Day_4\input.txt'
    lines = read_input(path)
    print("Answer part 1: ", part_one(lines))
    print("Answer part 2: ", part_two(lines))
    
  • Julia

    Had some time to clean up the code today since the solution was quite straight forward after making a plan on how to approach it.

    spoiler
    function readWordSearch(inputFile::String)::Matrix{Char}
    	f = open(inputFile,"r")
    	lines::Vector{String} = readlines(f)
    	close(f)
    	wordSearch = Matrix{Char}(undef,length(lines),length(lines))
    	for (i,line) in enumerate(lines)
    		wordSearch[i,:] = collect(line)
    	end
    	return wordSearch
    end
    
    function countXMASAppearances(wS::Matrix{Char})::Int
    	appearanceCount::Int = 0
    	for i=1 : size(wS)[1] #lines
    		for j=1 : size(wS)[2] #columns
    			wS[i,j]!='X' ? continue : nothing #continue if char is not X
    			#if char is X, check surrounding area
    			# check horizontals
    			#left
    			j>=4 ? (wS[i,j-1]*wS[i,j-2]*wS[i,j-3]=="MAS" ? appearanceCount+=1 : nothing) : nothing
    			#right
    			j<=size(wS)[2]-3 ? (wS[i,j+1]*wS[i,j+2]*wS[i,j+3]=="MAS" ? appearanceCount+=1 : nothing) : nothing
    			# check verticals
    			#up
    			i>=4 ? (wS[i-1,j]*wS[i-2,j]*wS[i-3,j]=="MAS" ? appearanceCount+=1 : nothing) : nothing
    			#down
    			i<=size(wS)[1]-3 ? (wS[i+1,j]*wS[i+2,j]*wS[i+3,j]=="MAS" ? appearanceCount+=1 : nothing) : nothing
    			# check diagonals
    			#left up
    			i>=4 && j>=4 ? (wS[i-1,j-1]*wS[i-2,j-2]*wS[i-3,j-3]=="MAS" ? appearanceCount+=1 : nothing) : nothing
    			#right up
    			i>=4 && j<=size(wS)[2]-3 ? (wS[i-1,j+1]*wS[i-2,j+2]*wS[i-3,j+3]=="MAS" ? appearanceCount+=1 : nothing) : nothing
    			#left down
    			i<=size(wS)[1]-3 && j>=4 ? (wS[i+1,j-1]*wS[i+2,j-2]*wS[i+3,j-3]=="MAS" ? appearanceCount+=1 : nothing) : nothing
    			#right down
    			i<=size(wS)[1]-3 && j<=size(wS)[2]-3 ? (wS[i+1,j+1]*wS[i+2,j+2]*wS[i+3,j+3]=="MAS" ? appearanceCount+=1 : nothing) : nothing
    		end
    	end
    	return appearanceCount
    end
    
    function countX_MASAppearances(wordSearch::Matrix{Char})::Int
    	appearances::Int = 0
    	for l=2 : size(wordSearch)[1]-1
    		for c=2 : size(wordSearch)[2]-1
    			wordSearch[l,c]!='A' ? continue : nothing
    			checkArr = [wordSearch[l-1,c-1],wordSearch[l-1,c+1],wordSearch[l+1,c-1],wordSearch[l+1,c+1]]
    			if checkArr in [['M','M','S','S'],['M','S','M','S'],['S','S','M','M'],['S','M','S','M']]
    				appearances += 1
    			end
    		end
    	end
    	return appearances
    end
    
    wordSearch::Matrix{Char} = readWordSearch(inputFile
    prinltn("part 1 appearances: $(countXMASAppearances(wordSearch))")
    prinltn("part 2 appearances: $(countX_MASAppearances(wordSearch))")
    

  • Kotlin

    fun part1(input: String): Int {
        return countWordOccurrences(input.lines())
    }
    
    fun part2(input: String): Int {
        val grid = input.lines().map(String::toList)
        var count = 0
        for (row in 1..grid.size - 2) {
            for (col in 1..grid[row].size - 2) {
                if (grid[row][col] == 'A') {
                    count += countCrossMatch(grid, row, col)
                }
            }
        }
        return count
    }
    
    private fun countCrossMatch(grid: List<List<Char>>, row: Int, col: Int): Int {
        val surroundingCorners = listOf(
            grid[row - 1][col - 1], // upper left
            grid[row - 1][col + 1], // upper right
            grid[row + 1][col - 1], // lower left
            grid[row + 1][col + 1], // lower right
        )
        // no matches:
        //   M S   S M
        //    A     A
        //   S M   M S
        return if (surroundingCorners.count { it == 'M' } == 2
            && surroundingCorners.count { it == 'S' } == 2
            && surroundingCorners[0] != surroundingCorners[3]
        ) 1 else 0
    }
    
    private fun countWordOccurrences(matrix: List<String>): Int {
        val rows = matrix.size
        val cols = if (rows > 0) matrix[0].length else 0
        val directions = listOf(
            Pair(0, 1),   // Horizontal right
            Pair(1, 0),   // Vertical down
            Pair(1, 1),   // Diagonal down-right
            Pair(1, -1),  // Diagonal down-left
            Pair(0, -1),  // Horizontal left
            Pair(-1, 0),  // Vertical up
            Pair(-1, -1), // Diagonal up-left
            Pair(-1, 1)   // Diagonal up-right
        )
    
        fun isWordAt(row: Int, col: Int, word: String, direction: Pair<Int, Int>): Boolean {
            val (dx, dy) = direction
            for (i in word.indices) {
                val x = row + i * dx
                val y = col + i * dy
                if (x !in 0 until rows || y !in 0 until cols || matrix[x][y] != word[i]) {
                    return false
                }
            }
            return true
        }
    
        var count = 0
    
        for (row in 0 until rows) {
            for (col in 0 until cols) {
                for (direction in directions) {
                    if (isWordAt(row, col, "XMAS", direction)) {
                        count++
                    }
                }
            }
        }
    
        return count
    }
    
  • C#

    namespace Day04;
    
    static class Program
    {
        public record struct Point(int Row, int Col);
    
        static void Main(string[] args)
        {
            var sample = File.ReadAllLines("sample.txt");
            var data = File.ReadAllLines("data.txt");
    
            Console.WriteLine($"Part 1 (sample): {SolvePart1(sample)}");
            Console.WriteLine($"Part 1 (data): {SolvePart1(data)}");
    
            Console.WriteLine($"Part 2 (sample): {SolvePart2(sample)}");
            Console.WriteLine($"Part 2 (data): {SolvePart2(data)}");
        }
    
        private static readonly string Search = "XMAS";
    
        private static readonly Func<Point, Point>[] DirectionalMoves =
        {
            p => new Point(p.Row + 1, p.Col),
            p => new Point(p.Row + 1, p.Col + 1),
            p => new Point(p.Row, p.Col + 1),
            p => new Point(p.Row - 1, p.Col + 1),
            p => new Point(p.Row - 1, p.Col),
            p => new Point(p.Row - 1, p.Col - 1),
            p => new Point(p.Row, p.Col - 1),
            p => new Point(p.Row + 1, p.Col - 1),
        };
    
        private static readonly Func<Point, Point>[] ForwardSlashMoves =
        {
            p => new Point(p.Row - 1, p.Col - 1),
            p => new Point(p.Row + 1, p.Col + 1),
        };
        
        private static readonly Func<Point, Point>[] BackSlashMoves =
        {
            p => new Point(p.Row + 1, p.Col - 1),
            p => new Point(p.Row - 1, p.Col + 1),
        };
    
        static long SolvePart1(string[] data)
        {
            return Enumerable
                .Range(0, data.Length)
                .SelectMany(row => Enumerable.Range(0, data[row].Length)
                    .Select(col => new Point(row, col)))
                .Where(p => IsMatch(data, p, Search[0]))
                .Sum(p => DirectionalMoves
                    .Count(move => DeepMatch(data, move(p), move, Search, 1)));
        }
    
        static long SolvePart2(string[] data)
        {
            return Enumerable
                .Range(0, data.Length)
                .SelectMany(row => Enumerable.Range(0, data[row].Length)
                    .Select(col => new Point(row, col)))
                .Where(p => IsMatch(data, p, 'A'))
                .Count(p => CheckDiagonalMoves(data, p, ForwardSlashMoves)
                            && CheckDiagonalMoves(data, p, BackSlashMoves));
        }
    
        static bool CheckDiagonalMoves(string[] data, Point p, Func<Point, Point>[] moves)
            => (IsMatch(data, moves[0](p), 'S') && IsMatch(data, moves[1](p), 'M'))
               || (IsMatch(data, moves[0](p), 'M') && IsMatch(data, moves[1](p), 'S'));
    
        static bool DeepMatch(string[] data, Point p, Func<Point, Point> move, string search, int searchIndex) =>
            (searchIndex >= search.Length) ? true :
            (!IsMatch(data, p, search[searchIndex])) ? false :
            DeepMatch(data, move(p), move, search, searchIndex + 1);
    
        static bool IsMatch(string[] data, Point p, char searchChar)
            => IsInBounds(data, p) && (data[p.Row][p.Col] == searchChar);
    
        static bool IsInBounds(string[] data, Point p) =>
            (p.Row >= 0) && (p.Col >= 0) && (p.Row < data.Length) && (p.Col < data[0].Length);
    }
    
  • Smalltalk

    I could have done it in 2 fns if I made them more generic, but couldn't be bothered

    day4p1: input
        | lines sum w h|
        
        sum := ('XMAS' asRegex matchesIn: input) size. "forward"
        sum := sum + ('SAMX' asRegex matchesIn: input) size. "backwards sep cause overlapping"
        
        lines := input lines.
        h := lines size.
        w := (lines at: 1) size.
        
        1 to: h-3 do: [ :p1 |
            1 to: w do: [ :p2 |
                sum := sum + (self d4diag: lines p1: p1 p2: p2 dir: -1).
                sum := sum + (self d4diag: lines p1: p1 p2: p2 dir: 0).
                sum := sum + (self d4diag: lines p1: p1 p2: p2 dir: 1).    
            ]
        ].
        
        ^ sum.
    
    d4diag: input p1: p1 p2: p2 dir: dir
        | reverse xm ii |
        
        xm := 'XMAS'.
        
        reverse := ((input at: p1) at: p2) = $S.
        
        0 to: 3 do: [ :i |
            ii := reverse ifTrue: [ 4 - i ] ifFalse: [ i + 1 ].
                                                        "if out of bounds, obv not possible"
            ((xm at: ii) = ((input at: p1 + i) at: i * dir + p2 ifAbsent: [^ 0])) ifFalse: [^ 0]
        ].
    
        ^ 1.
    

    Part 2

    day4p2: input
        | lines sum w h pos |
        "Find all diag mas, then check of 1 . -1 (we can look back on every -1"
        
        sum := 0.
        lines := input lines.
        h := lines size.
        w := (lines at: 1) size.
        
        1 to: h-2 do: [ :p1 |
            pos := Array new: w withAll: false.
            1 to: w do: [ :p2 |
                (self d42: lines p1: p1 p2: p2 dir: -1)
                    ifTrue: [
                        sum := sum + ((pos at: p2-2) ifTrue:[1] ifFalse:[0]).
                    ].
                
                (self d42: lines p1: p1 p2: p2 dir: 1) ifTrue: [pos at: p2 put: true].
            ]
        ].
        
        ^ sum.
    
    d42: input p1: p1 p2: p2 dir: dir
        | reverse xm ii |
        
        xm := 'MAS'.
        
        reverse := ((input at: p1) at: p2) = $S.
        
        0 to: 2 do: [ :i |
            ii := reverse ifTrue: [ 3 - i ] ifFalse: [ i + 1 ].
                                                        "if out of bounds, obv not possible"
            ((xm at: ii) = ((input at: p1 + i) at: i * dir + p2 ifAbsent: [^ false])) ifFalse: [^ false]
        ].
    
        ^ true.
    
  • Elixir

    defmodule AdventOfCode.Solution.Year2024.Day04 do
      use AdventOfCode.Solution.SharedParse
    
      defmodule Map do
        defstruct [:chars, :width, :height]
      end
    
      @impl true
      def parse(input) do
        chars = String.split(input, "\n", trim: true) |> Enum.map(&String.codepoints/1)
        %Map{chars: chars, width: length(Enum.at(chars, 0)), height: length(chars)}
      end
    
      def at(%Map{} = map, x, y) do
        cond do
          x < 0 or x >= map.width or y < 0 or y >= map.height -> ""
          true -> map.chars |> Enum.at(y, []) |> Enum.at(x, "")
        end
      end
    
      def part1(map) do
        dirs = for dx <- -1..1, dy <- -1..1, {dx, dy} != {0, 0}, do: {dx, dy}
        xmas = String.codepoints("XMAS") |> Enum.with_index() |> Enum.drop(1)
    
        for x <- 0..(map.width - 1),
            y <- 0..(map.height - 1),
            "X" == at(map, x, y),
            {dx, dy} <- dirs,
            xmas
            |> Enum.all?(fn {c, n} -> at(map, x + dx * n, y + dy * n) == c end),
            reduce: 0 do
          t -> t + 1
        end
      end
    
      def part2(map) do
        for x <- 0..(map.width - 1),
            y <- 0..(map.height - 1),
            "A" == at(map, x, y),
            (at(map, x - 1, y - 1) <> at(map, x + 1, y + 1)) in ["MS", "SM"],
            (at(map, x - 1, y + 1) <> at(map, x + 1, y - 1)) in ["MS", "SM"],
            reduce: 0 do
          t -> t + 1
        end
      end
    end
    
  • Zig

    const std = @import("std");
    const List = std.ArrayList;
    
    const tokenizeScalar = std.mem.tokenizeScalar;
    const parseInt = std.fmt.parseInt;
    const print = std.debug.print;
    const eql = std.mem.eql;
    
    var gpa = std.heap.GeneralPurposeAllocator(.{}){};
    const alloc = gpa.allocator();
    
    const Point = struct {
        x: isize,
        y: isize,
        fn add(self: *const Point, point: *const Point) Point {
            return Point{ .x = self.x + point.x, .y = self.y + point.y };
        }
    };
    
    // note: i have no idea how to use this or if it's even possible
    // const DirectionType = enum(u8) { Up, Down, Left, Right, UpLeft, UpRight, DownLeft, DownRight };
    // const Direction = union(DirectionType) {
    //     up: Point = .{ .x = 0, .y = 0 },
    // };
    
    const AllDirections = [_]Point{
        .{ .x = 0, .y = -1 }, // up
        .{ .x = 0, .y = 1 }, // down
        .{ .x = -1, .y = 0 }, // left
        .{ .x = 1, .y = 0 }, // right
        .{ .x = -1, .y = -1 }, // up left
        .{ .x = 1, .y = -1 }, // up right
        .{ .x = -1, .y = 1 }, // down left
        .{ .x = 1, .y = 1 }, // down right
    };
    
    const Answer = struct {
        xmas: u32,
        mas: u32,
    };
    
    pub fn searchXmas(letters: List([]const u8), search_char: u8, position: Point, direction: Point) u32 {
        const current_char = getChar(letters, position);
        if (current_char == search_char) {
            const next = position.add(&direction);
            if (current_char == 'M') {
                return searchXmas(letters, 'A', next, direction);
            } else if (current_char == 'A') {
                return searchXmas(letters, 'S', next, direction);
            } else if (current_char == 'S') {
                return 1; // found all letters
            }
        }
        return 0;
    }
    
    pub fn countXmas(letters: List([]const u8), starts: List(Point)) u32 {
        var counter: u32 = 0;
        for (starts.items) |start| {
            for (AllDirections) |direction| {
                const next = start.add(&direction);
                counter += searchXmas(letters, 'M', next, direction);
            }
        }
        return counter;
    }
    
    pub fn countMas(letters: List([]const u8), starts: List(Point)) u32 {
        var counter: u32 = 0;
        for (starts.items) |start| {
            const a_char = getChar(letters, start) orelse continue;
            const top_left_char = getChar(letters, start.add(&AllDirections[4])) orelse continue;
            const down_right_char = getChar(letters, start.add(&AllDirections[7])) orelse continue;
            const top_right_char = getChar(letters, start.add(&AllDirections[5])) orelse continue;
            const down_left_char = getChar(letters, start.add(&AllDirections[6])) orelse continue;
    
            const tldr = [3]u8{ top_left_char, a_char, down_right_char };
            const trdl = [3]u8{ top_right_char, a_char, down_left_char };
            if ((eql(u8, &tldr, "MAS") or eql(u8, &tldr, "SAM")) and (eql(u8, &trdl, "MAS") or eql(u8, &trdl, "SAM"))) {
                counter += 1;
            }
        }
        return counter;
    }
    
    pub fn getChar(letters: List([]const u8), point: Point) ?u8 {
        if (0 > point.x or point.x >= letters.items.len) {
            return null;
        }
        const row = @as(usize, @intCast(point.x));
    
        if (0 > point.y or point.y >= letters.items[row].len) {
            return null;
        }
        const col = @as(usize, @intCast(point.y));
        return letters.items[row][col];
    }
    
    pub fn solve(input: []const u8) !Answer {
        var rows = tokenizeScalar(u8, input, '\n');
    
        var letters = List([]const u8).init(alloc);
        defer letters.deinit();
        var x_starts = List(Point).init(alloc);
        defer x_starts.deinit();
        var a_starts = List(Point).init(alloc);
        defer a_starts.deinit();
    
        var x: usize = 0;
        while (rows.next()) |row| {
            try letters.append(row);
            for (row, 0..) |letter, y| {
                if (letter == 'X') {
                    try x_starts.append(.{ .x = @intCast(x), .y = @intCast(y) });
                } else if (letter == 'A') {
                    try a_starts.append(.{ .x = @intCast(x), .y = @intCast(y) });
                }
            }
            x += 1;
        }
    
        // PART 1
        const xmas = countXmas(letters, x_starts);
    
        // PART 2
        const mas = countMas(letters, a_starts);
    
        return Answer{ .xmas = xmas, .mas = mas };
    }
    
    pub fn main() !void {
        const answer = try solve(@embedFile("input.txt"));
        print("Part 1: {d}\n", .{answer.xmas});
        print("Part 2: {d}\n", .{answer.mas});
    }
    
    test "test input" {
        const answer = try solve(@embedFile("test.txt"));
        try std.testing.expectEqual(18, answer.xmas);
    }
    
    
  • Lisp

    Not super happy with the code, but it got the job done.

    Part 1 and 2
    (defun p1-process-line (line)
      (to-symbols line))
    
    (defun found-word-h (word data i j)
      "checks for a word existing from the point horizontally to the right"
      (loop for j2 from j 
            for w in word
            when (not (eql w (aref data i j2)))
              return nil
            finally (return t)))
    
    (defun found-word-v (word data i j)
      "checks for a word existing from the point vertically down"
      (loop for i2 from i 
            for w in word
            when (not (eql w (aref data i2 j)))
              return nil
            finally (return t)))
    
    (defun found-word-d-l (word data i j)
      "checks for a word existsing from the point diagonally to the left and down"
      (destructuring-bind (n m) (array-dimensions data)
        (declare (ignorable n))
        
        (and (>= (- i (length word)) -1)
             (>= m (+ j  (length word)))
             (loop for i2 from i downto 0
                   for j2 from j
                   for w in word
                   when (not (eql w (aref data i2 j2)))
                     return nil
                   finally  (return t)))))
    
    (defun found-word-d-r (word data i j)
      "checks for a word existing from the point diagonally to the right and down"
      (destructuring-bind (n m) (array-dimensions data)
        (and (>= n (+ i (length word)))
             (>= m (+ j  (length word)))
             (loop for i2 from i
                   for j2 from j
                   for w in word
                   when (not (eql w (aref data i2 j2)))
                     return nil
                   finally  (return t)))
        ))
    
    (defun count-word-h (data word)
      "Counts horizontal matches of the word"
      (let ((word-r (reverse word))
            (word-l (length word)))
        (destructuring-bind (n m) (array-dimensions data)
          (loop for i from 0 below n 
                sum (loop for j from 0 upto (- m word-l)
                          count (found-word-h word data i j)
                          count (found-word-h word-r data i j))))))
    
    (defun count-word-v (data word)
      "Counts vertical matches of the word"
      (let ((word-r (reverse word))
            (word-l (length word)))
        (destructuring-bind (n m) (array-dimensions data)
          (loop for j from 0 below m 
                sum (loop for i from 0 upto (- n word-l)
                          count (found-word-v word data i j)
                          count (found-word-v word-r data i j))))))
    
    (defun count-word-d (data word)
      "Counts diagonal matches of the word"
      (let ((word-r (reverse word)))
        (destructuring-bind (n m) (array-dimensions data)
          (loop for i from 0 below n
                sum (loop for j from 0 below m
                          count (found-word-d-l word data i j)
                          count (found-word-d-l word-r data i j)
                          count (found-word-d-r word data i j)
                          count (found-word-d-r word-r data i j)
                          )))))
    
    
    (defun run-p1 (file)
      "cares about the word xmas in any direction"
      (let ((word '(X M A S))
            (data (list-to-2d-array (read-file file #'p1-process-line))))
        (+
         (count-word-v data word)
         (count-word-h data word)
         (count-word-d data word))))
    
    
    (defun run-p2 (file) 
      "cares about an x of mas crossed with mas"
      (let ((word '(M A S))
            (word-r '(S A M))
            (data (list-to-2d-array (read-file file #'p1-process-line))))
        (destructuring-bind (n m) (array-dimensions data)
          (loop for i from 0 below (- n 2)
                sum (loop for j from 0 below (- m 2)
                          count (and (found-word-d-r word data i j)
                                     (found-word-d-l word data (+ i 2) j))
                          count (and (found-word-d-r word-r data i j)
                                     (found-word-d-l word data (+ i 2) j))
                          count (and (found-word-d-r word data i j)
                                     (found-word-d-l word-r data (+ i 2) j))
                          count (and (found-word-d-r word-r data i j)
                                     (found-word-d-l word-r data (+ i 2) j))
                            )))))
    
  • I tried to think of some clever LINQ to do this one, but was blanking entirely.

    So naΓ―ve search it is.

    C#
    string wordsearch = "";
    int width;
    int height;
    
    public void Input(IEnumerable<string> lines)
    {
      wordsearch = string.Join("", lines);
      height = lines.Count();
      width = lines.First().Length;
    }
    
    public void Part1()
    {
      int words = 0;
      for (int y = 0; y < height; y++)
        for (int x = 0; x < width; x++)
          words += SearchFrom(x, y);
    
      Console.WriteLine($"Words: {words}");
    }
    public void Part2()
    {
      int words = 0;
      for (int y = 1; y < height - 1; y++)
        for (int x = 1; x < width - 1; x++)
          words += SearchCross(x, y);
    
      Console.WriteLine($"Crosses: {words}");
    }
    
    public int SearchFrom(int x, int y)
    {
      char at = wordsearch[y * width + x];
      if (at != 'X')
        return 0;
    
      int words = 0;
      for (int ydir = -1; ydir <= 1; ++ydir)
        for (int xdir = -1; xdir <= 1; ++xdir)
        {
          if (xdir == 0 && ydir == 0)
            continue;
    
          if (SearchWord(x, y, xdir, ydir))
            words++;
        }
    
      return words;
    }
    
    private readonly string word = "XMAS";
    public bool SearchWord(int x, int y, int xdir, int ydir)
    {
      int wordit = 0;
      while (true)
      {
        char at = wordsearch[y * width + x];
        if (at != word[wordit])
          return false;
    
        if (wordit == word.Length - 1)
          return true;
    
        wordit++;
    
        x += xdir;
        y += ydir;
    
        if (x < 0 || y < 0 || x >= width || y >= height)
          return false;
      }
    }
    
    public int SearchCross(int x, int y)
    {
      if (x == 0 || y == 0 || x == width - 1 || y == width - 1)
        return 0;
    
      char at = wordsearch[y * width + x];
      if (at != 'A')
        return 0;
    
      int found = 0;
      for (int ydir = -1; ydir <= 1; ++ydir)
        for (int xdir = -1; xdir <= 1; ++xdir)
        {
          if (xdir == 0 || ydir == 0)
            continue;
    
          if (wordsearch[(y + ydir) * width + (x + xdir)] != 'M')
            continue;
          if (wordsearch[(y - ydir) * width + (x - xdir)] != 'S')
            continue;
    
          found++;
        }
    
      if (found == 2)
        return 1;
    
      return 0;
    }
    
You've viewed 34 comments.