You can't really blame the amount of stupidity online.
The problem is that ChatGPT (and other LLM) produce content of the average quality of its input data. AI is not limited to LLM.
For chess we were able to build AI that vastly outperform even the best human grandmasters. Imagine if we were to release a chess AI that is just as good as the average human...
We call them chess ai. But they're not actually real A.I. chess bots work off of opening books, predetermined best practices. And then analyzes each position and potential offshoots with an evaluation function.
They will then start to brute-force positions until it finds a path that is beneficial.
While it may sound very much alike. It works very differently than an A.I. However. It turned out that A.I software became better than humans at writing these functions.
So in a sense, chess computers are not A.I. They're created by A.I. at least Stockfish 12 has these "A.I inspired" evaluations. (Currently they're on Stockfish 15 I believe)
And yes. We also did make "chess AI" that is as bad as the average player. We even made some that are worse. Because we figured it would be nice if people can play a chess computer that is on the same skill level as the player. Rather than just being destroyed every time.
I'm not too surprised, they're probably downgrading the publicly available version of ChatGPT because of how expensive it is to run. Math was never its strong suit, but it could do it with enough resources. Without those resources, it's essentially guessing random numbers.
from what i understand, the big change in chat-gpt4 was that the model could “ask for help” from other tools: for maths, it knew it was a maths problem, transformed it to something a specialised calculation app could do, and then passed it off to that other code to do the actual calculation
same thing for a lot of its new features; it was asking specialised software to do the bits it wasn’t good at
My guess is that it's more a result of overfitting for alignment. Fine-tuning for "safety" (rather, more corporate-friendly outputs).
That is, by focusing on that specific outcome in training the model, they've compromised its ability to give well-"reasoned" "intelligent" sounding answers. A tradeoff between aspects of the model.
It's something that can happen even in simple statistical models. Say you have a scatter plot of data that loosely follows some trend, and you come up with two equations to describe that trend. One is a simple equation that loosely follows it but makes a good general approximation, and the other is a more complicated equation that very tightly fits the existing data. Then you use those two models to predict future data. But you find that the complicated equation is making predictions way off the mark that no longer fit the trend, and the simple one still has a wide error (how far its prediction is from the actual data) but still more or less accurately fits the general trend. In the more complicated equation, you've traded predictive power for explanatory power. It describes the data you originally had but it's not useful for forecasting data that follows.
That's an example of overfitting. It can happen in super-advanced statistical models like GPT, too. Training the "equation" (or as it's been called, spicy autocorrect) to predict outcomes that favor "safety" but losing the model's power to predict accurate "well-reasoned" outcomes.
If that makes any sense.
I'm not a ML researcher or statistician (I just went through a phase in college), so if this is inaccurate I'm open to corrections.
I used ChatGPT to write cover letters based on my resume before, and other tasks.
I used to give it data and tell chatGPT to "do X with this data". It worked great.
In a separate chat, I told it to "do Y with this data", and it also knocked it out of the park.
Weeks later, excited about the tech, I repeat the process. I tell it to "do x with this data". It does fine.
In a completely separate chat, I tell it to "do Y with this data"... and instead it gives me X.
I tell it to "do Z with this data", and it once again would really rather just do X with it.
For a while now, I have had to feed it more context and tailored prompts than I previously had to.
There is also a rumor that said the OpenAI has changed how the model run, now user input is fed into smaller model first, then if the larger model agree with the initial result from the smaller model, then larger model will continue the calculation passed from the smaller model, which supposedly can cut down GPU time.
Burn money providing a lot for nothing to build brand recognition. Then cut free service before bringing out "premium" that at first works better than the original.
Until a bunch of people starting paying and the resources aren't scaled up to match.
The important note, the "premium" service works just a bit better than (or maybe identically to) the original before the company cut features in order to develop that "premium" service.
This is my experience in general. ChatGTP when from amazingly good to overall terrible. I was asking it for snippets of javascript, explanations of technical terms and it was shockingly good. Now I'm lucky if even half of what it outputs is even remotely based on reality.
I've tried to use it for debugging by copying code into it, and it gives me the same code back as the corrected version. I was wondering why it's been getting worse
Tried basic embedded tasks a week ago: Complete trainwreck.
From using I2C to read out the internal temperature sensor on a Puya F030 (retested with an STM MCU and AVR: same answer but F030 replaced by STM32F103 within the code) to calling the WCH CH32V307 made by STM utilizing ARM M4.
After telling it to not use I2C it gave a different answer. Once more gibberish that looked like code.
What made this entirely embarrassing all a human would need to solve the question would be copy-pasting the question into Google and clicking the first link to the manufacturer example project/code hosted on GitHub.
Today it randomly decided to hide the results from some code that was supposed to be returned from a function. I asked it why it chose to hide the results and it couldn't tell me, it just apologized and then gave me the code without the hide logic. Pretty strange actually since we had been working on the code for half an hour and then all of the sudden it just decided to hide it all on its own.
Yes! I use it at work almost every day. Sometimes it takes longer to get it to solve the problem than it would have taken me to write it, since it makes mistakes, but sometimes it saves me hours of coding and thinking. It is very helpful in debugging error codes and stuff like that since it can evaluate an entire 1000 line script file in half a second.
I've never been able to get a solution that was even remotely correct. Granted, most of the times I ask ChatGPT is when I'm having a hard time solving it myself.
You need to be able to clearly describe the problem, and your expected solution, to get it to give quality answers. Type out instructions for it like you would type for a junior developer. It'll give you senior level code back, but it absolutely needs clear and constrained guidelines.
I mean, whose to say they aren't? But also, the fediverse is worthless compared to the big players. The entirety of the fediverses content to date is like a days worth of twitter or reddit content.
Is it really? It seems like it would be excellent at that. I have a little hand held device from the 1990's that can play 20 questions and is almost always right. It seems that if that little device can win, ChatGPT most certainly should be able to.
Edit: I just played and it guessed what I was thinking of in 13 questions. But then it kept asking questions. I asked why it was asking questions still since it already guessed it and it said "oh, you are absolutely correct, I did guess it correctly!". Lol, ChatGPT is funny sometimes.
It always asks me if it’s sporting equipment, and when I say no, it asks me if it’s sporting equipment for inside or outside - I then have to remind it that it’s not sporting equipment and that’s not a yes or no question.
Do you think maybe it's a simple and interesring way of discussing changes in the inner workings of the model, and that maybe people know that we already have calculators?
I think it's a lazy way of doing it. OpenAI has clearly stated that math isn't something that they are even trying to make it good at. It's like testing how fast Usain bolt is by having him bake a cake.
If chatgpt is getting worse at math it might just be a side effect of them making it better at reading comprehension or something they want it to be good at there is no way to know that.