A Swedish manufacturer wants to harness green energy from a cargo trailer's free real estate.
Sweden is testing a semi-truck trailer covered in 100 square meters of solar panels::A Swedish manufacturer wants to harness green energy from a cargo trailer's free real estate.
Yes, but also much less efficient due to the angles. These panels are either completely flat or completely vertical. Ideal conditions have them facing south at an angle.
I feel like it could be great for running cooling systems on trailers and stuff like that, not sure if it would be worth the hassle for adding range.
Even on a purposely designed solar car like the lightyear one it really only works because they used all the weight saving and aero tricks possible, which you can't really do with a truck that's supposed to haul cargo.
Yeah. the one good use I see is reefer trailers. Since some times they have to sit long times, with still the coolers running to keep the cargo within demanded thermal limits to keep the cold chain uninterrupted.
Most cooling is obviously needed when it is hot... so in summer and thus sung light time. So the panels would probably nicely run the coolers instead of having a fuel burning generator keeping the coolers going.
During winter, when there is no light. Well it's probably cold enough ambient the reefer isn't using lot of cooling anyway.
20kwc capacity: nice
also add 20kwh lithium storage at 200kg weight and it could help in few instances like cooling perishable cargo or driver's cabin when engine shut off, but definitely not to expand range
Putting solar on moving vehicles makes no sense except for very specific use cases.
Install those same panels on the ground and you can point them at a good angle for sunlight capture 24/7, don't have to literally carry the weight of them everywhere, don't have to worry about them getting dirty all the time from moving around winter roads, and are much easier to repair.
Solar ditches make more sense. Carrying solar panes add weight and air resistance. The trailer area is 416 ft which can hold ~33 panels if panel configurations are optimized for a trailer. Weight will be 3000 lbs, which cuts the tare payload by 6%.
This is not enough electricity to run a semi with two drivers splitting driving responsibilities, running day and night, and in weather that does not have power for the cells.
Trains are the most efficient system that we have. I wonder how the math would work for trains? I expect that it would be a net gain, but the added complexity of connecting and disconnecting for each car as the cars get switched in yards would be a nightmare. Once travelling, there is little braking and acceleration, which lowers the power demands.
Amount of power that can be generated is dictated by the angle to the Sun. You need to be perpendicular. Panels on the ground can slowly move and rotate to kind of track the sun. Or you put a bunch of mirrors and make a tower made of solar panels.
Solar panels on roof tend to be fixed infrastructure. You get what you get.
So if they apply panels to a vehicle you have two options. Flat or angled.
If they're flat and the only time you're ever going to get the maximum amount of power from them is during noon when the sun is directly above your vehicle. If angled that means the height of the vehicle has changed and they direction that they work is very dictated. If they track the Sun then they're probably going to waste more power than they can ever produce by constantly moving because you're on a vehicle that's constantly moving.
So it seems they might cover a weeks travel assuming 1000km per day. I wonder how much extra weight this would add, and if it's significant compared to the extra weight of the battery and cargo.
I swear it seems like some of these harebrained schemes must be being created by people who want solar to fail so that they can point at the failure when the dumb idea doesn't work.
I could see this working for either running cooling and such for refrigerated cargo or if they stick a battery in the trailer. In the latter case it would be possible to just charge it for free while the trailer sits in a lot somewhere. Then when the truck comes they plug in the battery and use the stored up power.
It is also added cost, added weight and complexity. It is only a good idea when those factors are outweighed by the benefits it brings - which is increased range? Or would it be better to put those solar pannels in stations alongside the road where trucks can go and charge up again? Then you can better place the panels to make more effective use of the sun rather than only having maybe half of the facing the sun at a time.
There are trade offs to everything and even if it is just wasted space does not make it a viable solution. We have seen foolish tests before - like the various companies trying to put solar panels under roads which has been a utter failure every single time they have tried - expensive, less efficient, and quickly needs to be replaced due t all the ware. Vs doing the saner thing and putting them above the traffic or in car park roofs... At least this idea has more merit then that. But still worth asking the question as to if it is the best use of resources.
Solar is getting more efficient by the week. It'll always be a marginal gain but it's still a gain. An applications engineer somewhere is likely doing the cost benefit analysis to determine the cost per panel to km of drivable energy produced to determine the x number of year return on the panels. If you assume the lifespan of a commercial long haul truck is about 20 years it could add up to a decent amount of energy savings and the panels would still retain some salvage value after that lifespan.
I love your optimism, bit that's not how any of this works.
It will never be more efficient to put panels on the vehicle. Any vehicle ever. Dirt, trees, buildings, bridges, tunnels, etc. All block light. And panels available today, are around 23% efficiency. And they only get worse over time, estimated a 90% lots at 20 years.
Could they make better panels someday, sure. Would it still make more sense to put those panels on top of buildings or an open areas where they can get lots of sun. Yes.
The issue is that while it may be a trivial gain, that same photovoltaic material would generate more energy in a fixed installation. Also, as an installation on a truck, the weight of the system contributes to the energy needed to move the truck, somewhat negating the benefit.
So sure, have your electric truck. The trickle charging of any onboard solar system wouldn't even be noticeable though, and it's better to have the panels on grid helping drive the charging infrastructure. I saw someone guesstimate a theoretical peak of 25kw. My car charges at home at half of that, and even for my comparatively tiny car, that takes a long time to restore range, compared to it driving down the road. The truck might be able to get an extra 5 miles of range per hour of peak sunlight with 25kw system under realistic conditions, and that same material might be able to extract 40-50% more energy over time in a fixed installation.
Not much impact for a single vehicle, but if somehow magically deployed at a mass scale 10 days of travel a year erased from even just half of our shipping truck Fleet would be a significant boon.
Let's not forget the panels don't only work when the truck is in motion, there are lots of trailers that just sit in the yard for good chunks of the year. They can now be plugged in and feeding the grid during that time