Skip Navigation

Don't bother promoting IPv6 as "the future". It's never going to be the default.

Basically what the title says. Here's the thing: address exhaustion is a solved problem. NAT already took care of this via RFC 1631. While initially presented as a temporary fix, anyone who thinks it's going anywhere at this point is simply wrong. Something might replace IPv4 as the default at some point, but it's not going to be IPv6.

And then there are the downsides of IPv6:

  • Not all legacy equipment likes IPv6. Yes, there's a lot of it out there.
  • "Nobody" remembers an IPv6 address. I know my IPv4 address, and I'm sure many others do too. Do you know your IPv6 address, though?
  • Everything already supports IPv4
  • For IPv6 to fully replace IPv4, practically everything needs to move over. De facto standards don't change very easily. There's a reason why QWERTY keyboards, ASCII character tables, and E-mail are still around, despite alternatives technically being "better".
  • Dealing with dual network stacks in the interim is annoying.

Sure, IPv6 is nice and all. But as an addition rather than as a replacement. I've disabled it by default for the past 10 years, as it tends to clutter up my ifconfig overview, and I've had no ill effects.

Source: Network engineer.

49 comments
  • Upvote for semi-unpopular opinion.

    I think you're wrong about the shortage being 'solved' by NAT. NAT is great for LAN and WAN in the developed world, but there are billions of folks in remote developing areas where it's not much help. It also severely limits the big chunks of address spaces that can be allocated to business, universities, governments, etc. It is not a trivial problem waved away by NAT.

    I think it will continue to be a very gradual but relentless rollout of IPv6. Not saying it will be fast. But 30 years from now, if we haven't destroyed civilization, I suspect IPv4 will be a quaint relic. And IPv6 will never run out of addresses.

  • IPv6 isn't just larger addresses, it was meant to totally remove the need for layer 2 / MAC addresses, bus networks, DHCP, and broadcasts. Since the plan was to get rid of the 12 byte ethernet header, the 24 byte increase in IP addresses would only be a 12 byte increase in header at the end of the day. WiFi wouldn't need three MAC addresses in every packet. IPv6 only achieves it's true potential with a complete switch over.

    I personally don't think that can ever happen. The opportunity to switch everyone over is absolutely long gone. IPv6 isn't an extension of v4 or a compatible replacement, like ASCII to UTF-8. It's more like X to Wayland. The protocol authors went "This is a mess we gotta rethink this from scratch". But there's so much already relying on the old protocol, and replacing it with something that doesn't perfectly match features is difficult for little reward for users.

    The increase in IPv6 nodes has mostly been due to mobile networks. The tragedy is they actually still mostly use layer 2 and bridge networking. IPv4 nor v6 can handle maintaining connections while addresses change. So they set it up so that you keep the same IP address as you travel and move between different towers. This is done with massive virtual layer 2 LANs across towers, with the IP routing happening at a central datacentre. IPv6 is simply used for the larger addresses, and none of the network/protocol simplifications it promised can be used.

  • If i had a nickle for every time ive seen ipv6 hate this week id have 2 nickels which isnt much bit its weird that it happened twice.

    The only reason i can think of to dislike ipv6 is if i was an authoritarian who hated the p2p capabilities it provoded.

    Also go watch apalrd's video on ipv6 migration u know u can actually spell words in ur ipv6 address.

  • I posted this elsewhere a few days ago. I don't think IPv6 can do what I require of a basic home network, let alone a large enterprise...

    I gave it a really good shot at implementing this past week. I spent 3 days getting up to speed, reading loads and trying various different things. But I am now back to IPv4 only because I just can't get IPv6 to do what I want and no amount of searching has made me think what I want to do is even possible.

    Some background about the IPv4 network I run at home: I run opnsense on a Proxmox server. I have a few services publicly available using port forwarding. I run several VLANs for IoT, VoIP, Cameras etc. I use a bunch of firewall rules that are specific client devices on the network. So for example I have a rule that blocks youtube from the kids tablets and the TV. I have a special rule around DNS for the wife as she doesn't want to use the pihole blocking features. These rules are made possible because the DHCP server is set to give them a fixed IP and I can create a firewall alias and rule based on that.

    None of these things on my existing network are particularly difficult to configure, they run really well.

    What I want from IPv6 is:

    1. All devices to use IPv6 including android devices.
    2. To have the same firewall rules configured and not have them be easily bypassed.
    3. To use privacy addresses as I don't want to make every device uniquely trackable over the internet.
    4. To be able to cope with changes to the ISP provided /48 prefix seamlessly.
    5. Have internal DNS make accessing intranet devices easy.
    6. To ensure the privacy of individual devices on my network by avoiding individual device tracking.

    What I've tried:

    1. Using DHCPv6, but this excludes android devices. So that's out.
    2. Using a NAT (to avoid tracking of individual devices) and fd00/8 addresses, but this is pointless as those addresses are lower priority than IPv4 (FFS!)
    3. SLACC just seems a non-starter.

    Additional: I don't think I have a problem with "thinking about it all wrong for IPv6". I may have a skill issue, hence this question.

    As far as I can tell to achieve requirement 1) you must use SLAAC. SLAAC without privacy extensions doesn't allow for 6).

    Changes to external ISP prefix assignment impacts MY INTERNAL NETWORK (this just seems insane). And as far as I can tell there's no easy way around this, especially if I have static addresses configured for servers which would (if using SLAAC) have to be manually configured.

    I can't see how DNS would be updated either, either Unbound running on Opnsense, or to the pihole. If I go for SLAAC with privacy extensions and I keep paying for a static IP (v4 & v6) to my ISP then I can't implement any firewall rules for specific devices as devices will change their IP regularly. And its even worse if I don't pay for a static IPv6 prefix.

    I don't think anything I'm trying to do is particularly strange or unusual but 26 years after its introduction I don't see that IPv6 can meet these requirements. And one of the leading firewall routers, especially in the homelab doesn't have answers to these questions either.

    Can you suggest a way to meet all 6 requirements I have with IPv6?

  • it's been the default for my smartphone for years. (t-mobile)

49 comments