Is there an interesting set of natural numbers defined by a number-theoretic property that is finite?
2 comments
There are tons of them! For example, the class of numbers n such that there is a Platonic solid made of n-gons. This class only has the numbers 3, 4, and 5. You can get other examples any time there is an interesting mathematical structure with only finitely many examples.
Well, yes, obviously. I was hoping for something number-theoretic, though. Let me reword the title.
There are tons of them! For example, the class of numbers n such that there is a Platonic solid made of n-gons. This class only has the numbers 3, 4, and 5. You can get other examples any time there is an interesting mathematical structure with only finitely many examples.
Well, yes, obviously. I was hoping for something number-theoretic, though. Let me reword the title.