By installing a heat pump in his house in the hills of Oslo, Oyvind Solstad killed three birds with one stone, improving his comfort, finances and climate footprint.
Heat pumps can't take the cold? Nordics debunk the myth::By installing a heat pump in his house in the hills of Oslo, Oyvind Solstad killed three birds with one stone, improving his comfort, finances and climate footprint.
EVs work fine in cold weather. I live in Minnesota and drive an EV. It loses about 10-20% of the total range in the winter, but most of that appears to be from generating heat for the passengers.
Ah yes, that time of year when cars are known to just start right up every time they're cranked over, and gas cars totally aren't still subject to a battery getting cold ...
Yep.. did not get to choose which car I got, and was quite disappointed with it.
The car itself is okay, the driving is good. But the battery and its management was horrible.
They even sent a recall recently because the battery was draining abnormally fast when not using the car
The problem isn’t that EVs don’t work in the winter, it’s that their range gets significantly reduced. We had issues with people literally up and abandoning their vehicles because their batteries ran flat.
In these cases the issue is less that the range is lost, and more that with snowy and cold weather traffic gets unpredictable. You can end up in long queues and that’s where the issues start.
When I went on a work trip up in the far north I never saw a single EV. Asked my colleagues about it and none of them thought EVs particularly feasible as a primary vehicle.
All that said, EVs work great for most people most of the time.
Based on context, I'd assume that the loss of efficiency of the batteries in the cold led the vehicle to over-estimate the range of the vehicle. If the car says it has 50 miles of range and the next DC charger is 40 miles away, I could imagine a situation where I'd get 30 miles down the road before the range estimate shows that there's actually only 35 miles of range because you wanted cabin heat.
EVs are weird in lots of ways when compared to ICE, and we're still figuring out lots of the problems that need solving.
And the people driving them are still learning the quirks for specific circumstances. Many drivers know you need to let a fuel car warm up more or to give it extra gas in XYZ scenario, but those same people won't always know what to do when switching to electric. Or they might instead do something that helped on a fuel vehicle, but actively harms on an electric, especially with the many manufacturer specific options that have no consistent naming. Hopefully we get some naming consistency soon, if for nothing else than ease of use.
From cooling the engine. When you are standing still and the engine is running it consumes about 1l/h.
I just looked up some numbers for EVs: 100kWh battery, heating takes 1kW for every 10K temperature difference, so 3kWh in -10°C. Its higher if you use additional stuff like the heating for the seats. With 150kWh/100km consumption you lose 20km every hour you are in the heated car. I would say that's a noticeable difference compared to no heating. I also checked how much an AC takes in summer and its about 1 to 2kW for 30°C.
The answers to your question is already in my post and the 150 was obviously a typo, because the loss in range checks out. It should be 15. AC uses less because the temperature difference is less.
No, I believe it's the heating that does it. In petrol cars the heating is a side effect of the engine running. Using it to heat the car in a way improves the fuel efficiency. In an EV the heat doesn't come from the engine, so the battery needs to feed both the engine and the heater.
You can have the engine on and not driving and your petrol will last quite long, not so much with an EV, unfortunately.