There's a bunch of advantages. IPv6 can be useful since your devices can have the same IP both internally and externally. No dealing with port forwarding. No split horizon DNS (where you have different DNS entries for internal vs external). No NAT. No DHCP required for client systems (can just use SLAAC to auto-generate addresses). Much simpler routing. It's a bit faster. Proper QoS.
I used to use Comcast, who actually have very good IPv6 support. They were the first major US ISP to roll out IPv6 to everyone, around 10 years ago. Unfortunately my current ISP doesn't have IPv6, but they're aiming to roll it out this year.
A good ISP that supports IPv6 will give you a /64 range. That's a huge number of IPs, 2^64. Easily enough for every device on your network to have a lot of public IPs. If you use Docker or VMs, you could give each one a public IPv6 address.
When every device on your network can have a public IP, there's no longer a reason to have private IPs. Instead, you'd use firewall rules for internal-only stuff (ie allow access only if the source IP is in your IPv6 range).
This is how the internet used to work in the old days - universities would have a large IP range, and every computer on campus would have a public IP.
Of course, you'd still have a firewall on your router (and probably on your computers too) that blocks incoming connections for things you don't want to expose publicly.
wouldn't /64 still leave you with 64 bits for you to do whatever? Ipv6 has a 128 bit address. If you can do subnets with a small usable portion of 32 bits, then you certainly can with a full 64 bits
The smallest recommended IPv6 subnet is /64. The biggest issue you will encounter is that SLAAC will refuse to work on anything smaller, and it just so happens that Android still doesn't support DHCPv6 and will be left without a valid address.